
Using Flash Remoting MX

Trademarks
Afterburner, AppletAce, Attain, Attain Enterprise Learning System, Attain Essentials, Attain Objects for Dreamweaver, Authorware,
Authorware Attain, Authorware Interactive Studio, Authorware Star, Authorware Synergy, Backstage, Backstage Designer, Backstage
Desktop Studio, Backstage Enterprise Studio, Backstage Internet Studio, ColdFusion, Design in Motion, Director, Director
Multimedia Studio, Doc Around the Clock, Dreamweaver, Dreamweaver Attain, Drumbeat, Drumbeat 2000, Extreme 3D, Fireworks,
Flash, Fontographer, FreeHand, FreeHand Graphics Studio, Generator, Generator Developer's Studio, Generator Dynamic Graphics
Server, JRun, Knowledge Objects, Knowledge Stream, Knowledge Track, Lingo, Live Effects, Macromedia, Macromedia M Logo &
Design, Macromedia Flash, Macromedia Xres, Macromind, Macromind Action, MAGIC, Mediamaker, Object Authoring, Power
Applets, Priority Access, Roundtrip HTML, Scriptlets, SoundEdit, ShockRave, Shockmachine, Shockwave, Shockwave Remote,
Shockwave Internet Studio, Showcase, Tools to Power Your Ideas, Universal Media, Virtuoso, Web Design 101, Whirlwind and Xtra
are trademarks of Macromedia, Inc. and may be registered in the United States or in other jurisdictions including internationally. Other
product names, logos, designs, titles, words or phrases mentioned within this publication may be trademarks, servicemarks, or
tradenames of Macromedia, Inc. or other entities and may be registered in certain jurisdictions including internationally.

This guide contains links to third-party websites that are not under the control of Macromedia, and Macromedia is not responsible for
the content on any linked site. If you access a third-party website mentioned in this guide, then you do so at your own risk. Macromedia
provides these links only as a convenience, and the inclusion of the link does not imply that Macromedia endorses or accepts any
responsibility for the content on those third-party sites.

Copyright © 2002 Macromedia, Inc. All rights reserved. This manual may not be copied, photocopied, reproduced, translated, or
converted to any electronic or machine-readable form in whole or in part without prior written approval of Macromedia, Inc.
Part Number ZRFCM200

Acknowledgments
Project Management: David Golden

Writing: Stephen M. Gilson, Hal Lichtin, Michael Peterson

Editing: Linda Adler and Noreen Maher

Second Edition: September 2002

Macromedia, Inc.
600 Townsend St.
San Francisco, CA 94103

CONTENTS
ABOUT THIS BOOK . VII

Who should read this book . viii
Developer resources . viii
About Macromedia Flash Remoting MX documentation. ix
Getting answers . ix
Contacting Macromedia . ix

CHAPTER 1 Using Flash Remoting MX . 1

About Flash Remoting MX .2
Understanding the Flash Remoting service adapters .3
Understanding AMF .3

Building Flash applications with Flash Remoting MX .5
Understanding the Flash Remoting development environment .5
Applying design patterns to Flash Remoting MX .6

Building a Hello World application with Flash Remoting .9
Building the remote service. .9
Calling the remote service from ActionScript .10

CHAPTER 2 Using Flash Remoting Components

in ActionScript . 13

Flash Remoting application structure. .14
Flash Remoting classes .16

About the Flash Remoting classes .17
Including Flash Remoting ActionScript files .18
Configuring Flash Remoting MX .19

Creating the Flash Remoting connection object .19
Creating the service object .22
Authenticating to the application server .23

Calling service functions .25
Specifying a responder object .25
Calling functions using named arguments in ColdFusion. .25
Specifying functions .26

Handling service results .27
Result-handling hierarchy. .27
Result-handling strategies .27

Handling errors .31
The error object .31

Error-handling hierarchy .31
Error-handling strategies. .32

CHAPTER 3 Using Flash Remoting Data in ActionScript 35

About Flash Remoting MX and data types. .36
Converting from ActionScript to application server data types. .37

ActionScript data conversion notes .38
Converting from application server data types to ActionScript. .39

Server data conversion notes .40
ColdFusion to ActionScript data conversion issues .41

Working with objects. .43
Working with ActionScript typed objects .43
Working with serializable Java objects .45

Working with RecordSet objects .46
About record sets .46
RecordSet methods. .47
Using RecordSet methods and properties .48
Delivering RecordSet data to Flash applications in ColdFusion MX.53
Using Flash MX UI components with RecordSet objects .54

Working with XML .57

CHAPTER 4 Using the NetConnection Debugger 59

About the NetConnection Debugger .60
NetConnection events .61

NetConnection event types .61
Common event information. .62
client event messages .63
app_server event messages .64
Flash Communication Server events .65

Using the NetConnection Debugger in ActionScript .66
Using the NetDebug.trace method. .66
Using connection-specific debugging methods .66
Configuring debugger output in ActionScript .66

CHAPTER 5 Using Flash Remoting MX with ColdFusion MX . . . 69

Using Flash Remoting MX with ColdFusion pages .70
Determining the Flash service name .70
Using the Flash scope to pass parameters to ColdFusion pages .71
Accessing ActionScript objects .73

Using Flash Remoting MX with ColdFusion components .77
Determining the Flash service name .77
Returning results to ActionScript .77
Passing parameters to ColdFusion components .78
Accessing ActionScript objects .80
Using component metadata with the Flash Remoting service .81

Using Flash Remoting MX with server-side ActionScript. .82
Using CF.http .82
Using CF.query .85

Calling web services from Flash Remoting MX .86
Invoking web service methods using Flash Remoting MX .86
iv Contents

Securing access to ColdFusion from Flash Remoting MX .88
Handling errors with ColdFusion .90

CHAPTER 6 Using Flash Remoting MX for Java 91

About Flash Remoting MX for Java .92
How does Flash Remoting MX for Java work? .92
Where does Flash Remoting MX fit into the Java application architecture? 92

Calling Java classes or JavaBeans from ActionScript .94
Making a Java class or JavaBean available to Flash Remoting MX.94
Getting a reference to a Java class or JavaBean in ActionScript .95
Invoking Java methods in ActionScript. .95
Looking at a Flash application that calls a JavaBean .96

Calling EJBs from Flash. .100
Getting a reference to an EJBHome object in ActionScript .100
Invoking EJB methods in ActionScript. .100
Looking at a Flash application that calls an EJB .101

Calling servlets and JSPs from Flash. .104
Coding a servlet to use with Flash Remoting MX .104
Getting a reference to a web application in ActionScript. .104
Calling a servlet or JSP .105

Calling JMX MBeans from Flash (JRun only) .107
Getting a reference to an MBean in ActionScript .107
Invoking MBean methods in ActionScript .108

Calling server-side ActionScript from Flash (JRun only) .109
Getting a reference to a server-side ActionScript file .109
Invoking server-side ActionScript functions .109

Handling function results in ActionScript .111
Using Flash Remoting MX with JRun security .113

Looking at the ActionScript .113
Looking at the JRun security settings .113

Passing XML objects between Flash and Java .114
Sending an ActionScript XML object to Java .114
Returning an XML object from Java to Flash .114

Viewing Flash Remoting MX log entries .115

CHAPTER 7 Using Flash Remoting MX for Microsoft .NET 117

About using Flash Remoting MX for Microsoft .NET. .118
Where does Flash Remoting MX fit into the Microsoft .NET framework?118
Setting up a Flash Remoting-enabled ASP.NET application. .121

Calling ASP.NET pages from Flash .122
Making an ASP.NET page available to Flash Remoting MX .122
Getting a reference to an ASPX-based service in ActionScript. .122
Invoking ASPX pages in ActionScript. .123
Using the Flash Remoting custom server control in ASPX pages 123
Using the Flash Remoting namespace in code-behind files .124
Using ASP.NET state management with Flash Remoting MX .125
Using ASP.NET exception handling .127

Using ADO.NET objects with Flash Remoting MX .128
Displaying a RecordSet in Flash with ActionScript .130
Contents v

Calling web services from Flash .131
Invoking web service methods using Flash Remoting MX .131
Invoking a remote web service from Flash .132

Calling ASP.NET assemblies from Flash .134
Calling assemblies from Flash .134
Returning an ActionScript object from an assembly .135

Viewing Flash Remoting log entries .137

CHAPTER 8 Flash Remoting ActionScript Dictionary 139

Overview of Flash Remoting ActionScript dictionary .140
ActionScript element documentation conventions .141
Contents of the dictionary .142
DataGlue (object) .143

Method summary for the DataGlue object .143
NetConnection (object). .146

Method summary for the NetConnection object .146
NetDebug (object). .158

Method summary for the NetDebug object .158
NetServices (object) .160

Method summary for the NetServices object .160
RecordSet (object) .164

Method summary for the RecordSet object .164

INDEX . 189
vi Contents

ABOUT THIS BOOK
Macromedia Flash Remoting MX provides a communications channel between
Macromedia Flash applications and a wide range of business logic and data from
ColdFusion, Microsoft® .NET, Java, and Simple Object Access Protocol (SOAP)-based
web services. Using Flash Remoting MX is intended for Macromedia Flash and application
server developers who want to build Rich Internet Applications.

Contents

• Who should read this book... viii

• Developer resources .. viii

• About Macromedia Flash Remoting MX documentation.. ix

• Getting answers .. ix

• Contacting Macromedia ... ix
vii

Who should read this book
This book is intended for developers with previous experience with Flash and an
application server, including Java, Microsoft .NET, or Macromedia ColdFusion MX.

If you are not familiar with Macromedia Flash MX, read the Flash MX documentation
set. If you are not familiar with application server development, read the documentation
included with your server.

Developer resources
Macromedia, Inc. is committed to setting the standard for customer support in developer
education, documentation, technical support, and professional services. The
Macromedia website is designed to give you quick access to the entire range of online
resources. The following table shows the locations of these resources:

Resource Description URL

Macromedia
website

General information about Macromedia
products and services

http://www.macromedia.com

Information on
Flash Remoting
MX

Detailed product information on Flash
Remoting MX and related topics

http://www.macromedia.com/flashremoting

Macromedia Flash
Remoting MX
Support Center

Professional support programs that
Macromedia offers

http://www.macromedia.com/support/

Flash Remoting
MX Online Forum

Access to experienced Flash and
application server developers through
participation in the Online Forums, where
you can post messages and read replies
on many subjects relating to Flash
Remoting MX

http://webforums.macromedia.com/

Installation
Support

Support for installation-related issues for
all Macromedia products

http://www.macromedia.com/support/email/
isupport

Training Information about classes, on-site training,
and online courses offered by Macromedia

http://www.macromedia.com/support/training

Developer
Resources

All the resources that you need to stay on
the cutting edge of Flash and application
server development, including online
discussion groups, Knowledge Base,
technical papers, and more

http://www.macromedia.com/desdev/
developer/

Macromedia
Alliance

Connection with the growing network of
solution providers, application developers,
resellers, and hosting services creating
solutions with Flash Remoting MX.

http://www.macromedia.com/partners/
viii About This Book

About Macromedia Flash Remoting MX documentation
The Macromedia Flash Remoting MX documentation is designed to provide support for
the complete spectrum of participants. Organized to let you quickly locate the
information that you need, the Flash Remoting MX documentation is provided in Adobe
Acrobat formats. Flash Remoting MX documentation in Acrobat format is available on
the Flash Remoting MX product CD-ROM.

Getting answers
One of the best ways to solve particular programming problems is to tap into the vast
expertise of the Flash and application server developer communities on the Macromedia
Online Forums. Other developers on the forum can help you figure out how to do just
about anything with Flash Remoting MX. The search facility can also help you search
messages from the previous 12 months, allowing you to learn how others have solved a
problem that you might be facing.

Contacting Macromedia

Corporate
headquarters

Macromedia, Inc.
600 Townsend Street
San Francisco, CA 94103

Tel: 415.252.2000
Fax: 415.626.0554

Web: http:// www.macromedia.com

Technical support Macromedia offers a range of telephone and web-based
support options. Go to http://www.macromedia.com/support/
flashremoting for a complete description of technical support
services.

You can make postings to the Flash Remoting MX Support
Forum (http://webforums.macromedia.com) at any time.

Sales Toll Free: 888.939.2545

Tel: 617.219.2100
Fax: 617.219.2101

E-mail: sales@macromedia.com
About Macromedia Flash Remoting MX documentation ix

x About This Book

CHAPTER 1

Using Flash Remoting MX
Macromedia Flash Remoting MX is an application server gateway that provides a
network communications channel between Flash applications and remote services. In
this chapter, you learn the basics of Flash Remoting MX, including the Flash Remoting
architecture, applying design patterns to Flash Remoting development, and building a
simple Flash application with Flash Remoting MX.

Contents

• About Flash Remoting MX.. 2

• Building Flash applications with Flash Remoting MX ... 5

• Building a Hello World application with Flash Remoting.. 9
1

About Flash Remoting MX
Flash Remoting MX is an application server gateway that provides a network
communications channel between Flash applications and remote services. Remote
services consist of application server technologies, such as a JavaBean, Macromedia
ColdFusion component or page, ASP.NET page, or web service. Service functions
represent a reference to a specific remote service from ActionScript in a Flash movie.

When compared to other techniques for connecting Flash applications to external data
providers, such as HTTP functions like getURL and loadVariables and XML functions
like XMLSocket, Flash Remoting MX provides the following advantages:
• Ease of use Flash Remoting MX offers automatic data type conversion from

native remote service code, such as Java, CFML, and C#, to ActionScript and back
again. Also, Flash Remoting MX automatically performs logging, debugging, and
security integration.

• Performance Flash Remoting MX serializes messages between Flash applications
and remote services using the Action Message Format (AMF). AMF is a binary
format modeled on the Simple Object Access Protocol (SOAP) format.

• Extensibility Flash Remoting MX is designed to integrate with established
application design patterns and best practices to build well-designed Flash
applications.

You use the NetServices ActionScript functions to connect to application server
technologies and web services. In addition, the NetDebug and DataGlue ActionScript
functions help debug Flash applications and display record sets in Flash User Interface
(UI) Components.

When compared to traditional HTML-based browser applications, Flash applications
provide unique abilities to create dynamic and sophisticated user interactions, including
the following:
• Flash Player runtime to execute code, transmit data, and invoke remote services
• Separation of client-side presentation logic from the server-side application logic
• Efficient use of bandwidth by removing the need to refresh the entire page and

employing vector-based graphics
• Easy deployment on multiple platforms and devices

On the server side, Flash Remoting MX runs as a servlet in Java application servers, an
assembly in .NET servers, and a native service in ColdFusion MX. Depending on the
application server platform, Flash Remoting MX on the server contains a series of filters
that perform logging, error handling, and security authentication, as well as
automatically mapping the service function request to the appropriate server technology.
2 Chapter 1 Using Flash Remoting MX

Using Flash Remoting MX, you can build sophisticated Flash applications, such as a
message board, shopping cart, or product catalog. The following figure depicts a
simplified representation of the Flash Remoting architecture:

Understanding the Flash Remoting service adapters
Flash Remoting MX automatically maps incoming requests to the appropriate service
adapters, which provides a direct connection to a specific application server technology.
When an HTTP request arrives at the server and contains AMF, Flash Remoting MX
maps the request to the appropriate adapter by name. To avoid naming conflicts, you
specify the directory structure, fully qualified class or package name, or WSDL URL of
the web service in ActionScript.

Understanding AMF
To send and receive messages from remote services, Flash Remoting MX uses Action
Message Format (AMF), a binary message format designed for the ActionScript object
model. Using AMF, Flash Remoting MX encodes data types back and forth between the
Flash application and the remote service over HTTP. Modeled on the Simple Object
Access Protocol (SOAP), AMF uses a packet format to relay information. An AMF
packet consists of the following parts:
• Packet header that contains AMF version information
• Context header count
• Array of context headers that contain information describing the context in which

individual AMF messages should be processed
About Flash Remoting MX 3

• Message count
• Array of messages

Server function requests are automatically serialized into AMF format using the
NetServices ActionScript functions. On the server, Flash Remoting MX deserializes the
incoming AMF messages. When the server-side processing finishes, the results are
serialized to AMF and sent back to the Flash application. The format of the
server-generated AMF message is identical to the client-generated packet. The body of
the individual AMF message contains the error or response object, which is expressed as
an ActionScript object.

For more information about error and response objects, see Chapter 2, “Using Flash
Remoting Components in ActionScript” on page 13.
4 Chapter 1 Using Flash Remoting MX

Building Flash applications with Flash Remoting MX
Flash applications that use Flash Remoting MX resemble other client-server development
platforms, including traditional HTML-based web applications. For example, Flash
applications usually appear in the context of a browser window, much like HTML pages.
In addition, Flash applications can contain controls for displaying text and graphics,
gathering user input, and communicating with a remote server, much like HTML.

Like a web browser request for an HTML page, the Flash application makes a service
function call to a remote service. The service function call is a client-initiated,
asynchronous event. The Flash application makes a request to the remote service, the
service processes the request, and returns the results. The Flash Player does not wait for
the result, it handles the result when it is returned.

Understanding the Flash Remoting development environment
Because Flash Remoting MX connects two distinct and separate runtime environments,
you build Flash applications with Flash Remoting MX in two programming languages,
ActionScript and the programming language of your application server. Therefore,
building Flash applications with Flash Remoting MX demands knowledge of at least two
different development environments:
• Flash MX To create Flash applications that use Flash Remoting MX, you use the

Flash MX authoring environment to design the user interface and write the
client-side ActionScript.

• Application server tool For ColdFusion, Java, or .NET development, you
typically use a text editor or an integrated development environment (IDE) that
supports the associated programming languages and APIs. Macromedia
Dreamweaver MX supports ColdFusion, JSP, and ASP.NET development.

• Java or .NET compiler For Java or .NET development, you need a Java or .NET
compiler to create executable code.

Because of the separation between the client and server environments, you might develop
Flash applications using Flash Remoting MX as a team project. In traditional
HTML-based web applications, responsibilities usually fall into two general roles,
designer and developer. The designer creates the HTML user interface, and the developer
creates the application server logic.

In Flash development using Flash Remoting MX, you might find it useful to organize
development roles as server-side developers, client-side developer, and client-side
designer. Under this division of labor, the client-side designer creates the Flash user
interface, including layout, animation, and effects. The client-side developer creates the
ActionScript to connect to the remote service and handle the results. Finally, the
server-side developer builds the business logic on the application server to serve as the
remote service.

For more information on process planning, see the PetMarket Blueprint application on
the Macromedia website at http://www.macromedia.com/desdev/mx/blueprint/.
Building Flash applications with Flash Remoting MX 5

Applying design patterns to Flash Remoting MX
Flash Remoting MX is designed to integrate into established design patterns and
frameworks. For Flash applications, Flash Remoting MX streamlines the implementation
of properly structured design patterns. Besides increasing development efficiency and
reducing mistakes caused by poor designs, patterns can help increase the performance
and stability of your applications by forcing you to examine the client-server interactions.

Using the model-view-controller architecture with Flash Remoting MX

Widely adopted by the software development community for user interface-oriented
applications, the model-view-controller (MVC) architecture organizes the code of your
application by use. The MVC architecture consists of the following elements:
• Model The model represents the data of an application and the processing of that

data and other logic. In a web application, this typically consists of the application
server program and the database.

• View The view represents the user interface, which usually consists of user controls
and information display.

• Controller The controller represents the logic that handles user input and changes
the model or view accordingly. Depending on your application design, the controller
can be located on the client, the server, or a combination of both. To minimize the
amount of network traffic and to take advantage of the Flash runtime, Macromedia
recommends implementing the controller in Flash is preferred.

The following figure depicts the MVC architecture in the context of Flash Remoting
MX:
6 Chapter 1 Using Flash Remoting MX

In the figure, Flash Remoting MX enables the separation of the controller from the
model by providing a communication channel between Flash applications and
application servers or web services. For more information about applying MVC patterns
to Flash applications that use Flash Remoting MX, see the PetStore Blueprint application
on the Macromedia website at http://www.macromedia.com/desdev/mx/blueprint.

Using other design patterns with Flash Remoting MX

Other design patterns exist that try to reduce service function calls, such as the value
object pattern. Flash Remoting MX can return results from a remote service as an
ActionScript object. An ActionScript object lets you encapsulate service data, which lets
you return one object to the Flash application. Instead of numerous individual calls, one
object is returned. For more information, see the Value Object entry in the Design
Pattern Catalog at http://java.sun.com/blueprints/patterns/j2ee_patterns/value_object/
index.html.

To simplify the remote service API available to Flash applications, you can use the facade
design pattern to provide a buffer layer between a Flash application and the remote
service. The facade pattern prescribes an application server-based broker to receive Flash
application service calls and relay the function to the appropriate server resource. This
gives you the flexibility of changing your remote service architecture without changing
the Flash application.

The following figure depicts the facade design pattern in the context of Flash Remoting
MX:
Building Flash applications with Flash Remoting MX 7

A ColdFusion component, JavaBean, or .NET assembly could serve as the facade by
receiving all service function requests from Flash and dispatching the requests to the
appropriate application server resource or web service call.

For more information about using the value object and facade design patterns with Flash
Remoting MX, see "Software Design Patterns for Flash Remoting" on the Macromedia
web site at http://www.macromedia.com/desdev/articles/facades.html.
8 Chapter 1 Using Flash Remoting MX

Building a Hello World application with Flash Remoting
In this section, you build a simple Flash application that uses Flash Remoting MX to
connect to four different remote services, including a ColdFusion page, a JavaBean, an
ASPX page, and a web service. You will see that Flash applications require minimal
changes to call different remote services.

To build the Hello World application, see the following sections:
• Building the remote service
• Calling the remote service from ActionScript

Building the remote service
Flash Remoting MX supports Java, ASP.NET, and ColdFusion-based remote services.
For a simple Hello World application, the following table lists the application server code
by platform and where to save the file to make it available to Flash Remoting MX:

For more information about application server-specific documentation, see the following
chapters:
• Chapter 5, “Using Flash Remoting MX with ColdFusion MX” on page 69
• Chapter 6, “Using Flash Remoting MX for Java” on page 91
• Chapter 7, “Using Flash Remoting MX for Microsoft .NET” on page 117

Application
Server Application server code File location

ColdFusion MX <cfset flash.result = "Hello from
ColdFusion MX!">

Save the ColdFusion page as helloWorld.cfm
in a folder named remoteservices under your
webroot.

JRun 4 package com.remoteservices;

import java.io.Serializable;

public class FlashJavaBean
implements Serializable {

private String message;

public FlashJavaBean() {
message = "Hello from Java!";

}
public String helloWorldJava() {

return message;
}

}

Save the compiled JavaBean class file to
classes/com/remoteservices folder under the
SERVER-INF directory.

ASP.NET <%@ Register TagPrefix="Macromedia"
Namespace="FlashGateway"
Assembly="flashgateway" %>
<%@ Page language="c#" debug="true" %>
<Macromedia:Flash ID="Flash"
runat="server">
 Hello from .NET!
</Macromedia:Flash>

Save the ASPX page as helloWorldNET.aspx
in the flashremoting directory under your
webroot.
Building a Hello World application with Flash Remoting 9

Calling the remote service from ActionScript
To build a Flash application that uses Flash Remoting MX, you write ActionScript in the
Flash MX authoring environment that connects to the remote service and calls a service
function. For more information on building Flash applications that use Flash Remoting
MX, see Chapter 2, “Using Flash Remoting Components in ActionScript” on page 13.

To build the Flash application that calls remote services using Flash Remoting:

1 In the Flash MX authoring environment, create a new Flash file, and save it as
serviceTest.fla.

2 In the document window, insert a text field and a PushButton UI component.

3 Select the text field with your mouse. In the Properties Inspector, name the text field
messageDisplay, and select Dynamic Text in the menu.

4 Select the PushButton UI component with your mouse. In the Properties Inspector,
enter button_Clicked in the Click Handler parameter, and enter "Anyone there?" in
the Label parameter.

5 Open the Actions Panel, and select Actions for Frame 1 of Layer 1 in the menu.
Insert the following ActionScript code:
//imports the NetServices ActionScript file

#include "NetServices.as"
//if statement creates the connection to the remote service and creates a

service object
if (inited == null)
{

inited = true;
NetServices.setDefaultGatewayURL("gatewayURL");
serviceConnection = NetServices.createGatewayConnection();
serviceObject = serviceConnection.getService("serviceName", this);

}
//function executes when the user clicks the button
function button_Clicked()
{

//service function call to the remote service
serviceObject.serviceFunctionName();

}
//if the service function is successful, the _Result function of the same name

executes
function serviceFunctionName_Result(result)
{

messageDisplay.text = result;
}
//if the service function is unsucessful, the _Status function of the same name

executes
function serviceFunctionName_Status(result)
{

messageDisplay.text = error.description;
}

10 Chapter 1 Using Flash Remoting MX

In the code, the ActionScript creates a reference to the remote service using the
NetServices functions setDefaultGateway, createGatewayConnection, and getService.
You specify the following variables:

• The gateway URL depends on the location of the application server running
Flash Remoting MX.

• You specify the service function name, which maps to the remote service function
name, in the context of the service object.

• You handle the results returned by the service function from the remote service
using serviceFunctionName_Result or serviceFunctionName_Status functions. If
the service function call succeeds, the _Result function executes. If the service
function fails, the _Status function executes.

For more information about connecting to remote services and handling results, see
Chapter 2, “Using Flash Remoting Components in ActionScript” on page 13.

6 Save the file.

Using the previous ActionScript as a template, the following table lists the values for
service name and service function variables:

For more information about application server-specific service name and service function
names, see the following chapters:
• Chapter 5, “Using Flash Remoting MX with ColdFusion MX” on page 69
• Chapter 6, “Using Flash Remoting MX for Java” on page 91
• Chapter 7, “Using Flash Remoting MX for Microsoft .NET” on page 117

Remote service Service name Service function name

ColdFusion MX remoteservices helloWorld

JRun 4 com.remoteservices helloWorldJava

ASP.NET remoteservices helloWorldNET

Web service http://services.xmethods.net/soap/
urn:xmethods-delayed-quotes.wsdl

getQuote
Building a Hello World application with Flash Remoting 11

12 Chapter 1 Using Flash Remoting MX

CHAPTER 2

Using Flash Remoting Components

in ActionScript
This chapter describes how to write ActionScript that uses Macromedia Flash Remoting
services. It describes how to configure connection information, call service functions, and
handle the results. After reading this chapter, you should be able to create a simple
application that uses Flash Remoting MX to get data from an application server.

Contents

• Flash Remoting application structure... 14

• Flash Remoting classes... 16

• Including Flash Remoting ActionScript files .. 18

• Configuring Flash Remoting MX .. 19

• Calling service functions .. 25

• Handling service results ... 27

• Handling errors ... 31
13

Flash Remoting application structure
Using Flash Remoting MX to call an application service is similar to calling a web service
or making a remote procedure call (RPC), because you make a call to some remote
service and you get a response from the service. As with web services and RPCs, data
from the remote service gets converted from the native data type of the remote service
(such as a Java or C# data type) to a representation that is used to transfer the data over
the network.

Unlike an RPC or web service request, a call made using Flash Remoting MX does not
directly receive the results of the service. Instead, you write a result-handler callback
routine to handle the returned data. Because the remote service call and callback routine
are separate, your service call and result handling are asynchronous. In other words, the
service request is like a function call without a return, and the service result response is
like a Flash event, for which you write an event handler method. The following figure
shows this relationship:

To interact with application servers using Macromedia Flash Remoting MX, do the
following in your Flash application ActionScript:

1 Include the Flash Remoting ActionScript files.

2 Configure Flash Remoting MX.

3 Call service functions and pass parameters.

4 Handle the results and error status information returned to Flash in result
event-handler routines.

The following example ActionScript code makes two Flash Remoting service calls, which
get a temperature and a forecast. Each Flash Remoting service call has a corresponding
result-handler callback method to show the results in the Flash application, and a status
handler to handle any error information from Flash Remoting MX.
14 Chapter 2 Using Flash Remoting Components in ActionScript

#include "NetServices.as"
// uncomment the next line to use the NetConnection debugger
// #include "NetDebug.as"

if (inited == null)
{

inited = true;
NetServices.setDefaultGatewayURL("http://services.

myco.com/flashservices/gateway")
gatewayConnection = NetServices.createGatewayConnection();
weatherService = gatewayConnection.getService

("flashExamples.weatherStation", this);
}

weatherService.getTemperature("New York");
weatherService.getForecast("Chicago");

function getTemperature_Result(temperature)
{ temperatureIndicator.text = temperature; }
function getForecast_Result(forecast)
{ forecastIndicator.text = forecast; }
function onStatus(errorinfo)

{message.text = errorinfo.description; }

Although a more complex application would be structured differently, the preceding
example shows the fundamental elements of a Flash Remoting MX application.

Note: Flash Remoting MX applications must ensure that the r40 revision or later of the
Macromedia Flash Player 6 is installed in the client browser. Use the Macromedia Flash
deployment kit and the codebase tag to create the detection. The deployment kit is available
at http://www.macromedia.com/software/flash/download/deployment_kit/, and includes
instructions. For more information on ensuring that the correct version of Flash Player for
Flash Remoting MX is installed on the client’s system, see the Flash Remoting MX Support
Center at http://www.macromedia.com/support/flash/flashremoting/.

Call the service
functions.

Callback functions
handle returned results
and error status
information from the
service functions.

Configure Flash
Remoting MX.

Include Flash Remoting
ActionScript files.
Flash Remoting application structure 15

Flash Remoting classes
The Flash Remoting-related ActionScript classes provide methods to configure Flash
Remoting MX, interact with the remote services, and manipulate data on the client. The
following figure shows the Flash Remoting-related ActionScript classes and their
methods. It divides Flash Remoting classes and methods into three functional areas for
configuring Flash Remoting MX and calling services, debugging, and handling record set
data, and shows the classes and their methods for each area. (The NetConnection class
includes methods in two categories.)
16 Chapter 2 Using Flash Remoting Components in ActionScript

About the Flash Remoting classes
The following table describes the Flash Remoting classes. For detailed reference
information on individual class methods, see Chapter 8, “Flash Remoting ActionScript
Dictionary” on page 139.

Class Purpose

NetServices Sets a default gateway and establishes a connection (NetConnection)
object for the gateway. The gateway is the Flash Remoting MX software
that resides on the application server.

Use the NetServices.createGateWayConnection method to create a
gateway connection (NetConnection) object that connects your Flash
application to a Flash Remoting gateway on the application server. For
more information on using NetServices methods, see “Configuring
Flash Remoting MX” on page 19.

NetConnection Configures and manages connections to the gateway.

The NetConnection.getService method provides access to a service on
the gateway. For more information on using this method, see “Creating
the service object” on page 22.

The NetConnection.setCredentials method provides login information
for the gateway server. For more information on using this method, see
“Authenticating to the application server” on page 23.

The class includes four methods for debugging individual connections.
For more information see “Using connection-specific debugging
methods” on page 66.

The remaining methods in this class (addHeaders, call, close, and
connect) are lower-level utilities that are not needed in most
applications.

NetDebug Required by the NetConnection Debugger. Manages the local
connection between the Flash application being debugged and the
NetConnection Debugger. Includes a single method, NetDebug.trace,
which sends a trace event to the NetConnection Debugger with a
specific ActionScript object.

The NetConnection Debugger reports information on Flash Remoting
events. For ColdFusion MX, these events also include server activity,
such as SQL queries. For more information on using the NetConnection
Debugger, see Chapter 4, “Using the NetConnection Debugger” on
page 59.
Flash Remoting classes 17

Including Flash Remoting ActionScript files
The Flash Remoting ActionScript files contain code that defines many of the Flash
Remoting classes. Use the #include directives in the following table at the top of the
ActionScript in the first frame of the Flash application to include these class definitions
in your Flash application. The directives let you use the Flash Remoting classes and
methods:

RecordSet Creates and manipulates RecordSet objects. RecordSet objects
typically represent SQL query results and correspond to the ColdFusion
Query objects and C# System.Data.DataTable objects. Some remote
services return RecordSet objects to Flash.

RecordSet methods include functions to create record sets and to add,
delete, change, and get record set items. They also can get information
about the record set, sort the record set, define an object to receive
notifications when the record set changes, and set the way the record
set is delivered from the server.

For more information on using the RecordSet class, see “Working with
RecordSet objects” on page 46.

DataGlue Binds RecordSet objects to Flash MX components, such as ListBox or
ComboBox, that have labels with associated data. The
DataGluebindFormatStrings and DataGlue.bindFormatFunction
methods specify a RecordSet to use to populate the UI component and
tell Flash how to populate the component’s labels and data from the
RecordSet object.

For more information on using DataGlue, see“Using DataGlue methods”
on page 56.

Class Purpose

Include statement Purpose

#include NetServices.as Enables the NetServices class. All Flash Remoting clients
normally use this class. This statement also enables the
RecordSet class.

#include NetDebug.as Enables NetConnection Debugger output and the
NetDebugConfig and NetDebug classes. Include this statement
during development to enable debugging of Flash Remoting
applications.

You must remove this line before you publish your Flash
application for deployment to a production server. By removing
this statement, you prevent access to debugging information
from remote sites.

#include DataGlue.as Enables the DataGlue class. Use this statement if you are using
DataGlue methods to simplify providing RecordSet data to Flash
MX UI components.
18 Chapter 2 Using Flash Remoting Components in ActionScript

Configuring Flash Remoting MX
Before you can call a remote service, you must configure Flash Remoting MX:

Note: The client does not access the remote server when you configure Flash Remoting
MX. The client first communicates with the remote server when it makes a first service
function call.

To configure Flash Remoting MX:

1 Create the Flash Remoting connection object.

2 Create the service object.

3 If your application server or service requires user authentication, provide the
authentication information.

The following sections describe these steps.

Creating the Flash Remoting connection object
When you configure a Flash Remoting connection, you identify a remote gateway for
Flash to use in remote service requests and create a NetConnection object that enables
Flash Remoting MX to connect to the remote gateway.

To create a Flash Remoting connection object:

1 Specify the gateway URL.

2 Create a NetConnection object that uses the specified URL.

You have several options for doing these steps, including the following:
• You can use the NetServices.createGatewayConnection method to specify the

URL and create the NetConnection object.
• You can use a NetServices.setDefaultGatewayURL method to specify a default gateway,

and use the NetServices.createGatewayConnection method without a URL to create
the NetConnection object. Flash Remoting MX uses the default gateway for all
connections that you create without otherwise specifying a gateway.

• You can specify the gateway in the web page you use to deploy the SWF file, and use
the NetServices.createGatewayConnection method without a URL to create the
NetConnection object.

You can combine these techniques. If you do so, the gateway URL is determined as
follows:

1 A URL specified in a createGatewayConnection method takes precedence over any
other URL.

2 A URL specified in the deployed web page takes precedence over a default gateway
URL.

3 If you do not otherwise specify a gateway URL, Flash Remoting MX uses the gateway
specified in a NetServices.setDefaultGatewayURL method.
Configuring Flash Remoting MX 19

Macromedia recommends using the setDefaultGatewayURL method to specify the
URL of the gateway that you use in the Flash MX authoring environment. Doing so lets
you test your Flash Remoting application directly in the development environment,
without having to change your code when you deploy your application. When you
deploy the SWF file, supply the production gateway URL in the web page that you use to
run the Flash application. This way, you also do not have to make any changes in your
Flash application to deploy the SWF file on different application servers.

Specifying the gateway in the NetServices createGatewayConnection method

To configure a connection to a specific gateway, use the createGatewayConnection
method; for example:

var gatewayConnection = NetServices.createGatewayConnection("http://apps.
mycompany.com/flashservices/gateway");

The gatewayConnection object returned by this method is the NetConnection object for
the connection. You use this object to set security credentials, if required, and to get the
Flash Remoting service or services that you will use.

This technique has the disadvantage of a hard-coded URL. To change the gateway URL,
you must change the ActionScript and publish and deploy your movie.

Using the NetServices setDefaultGatewayURL method

The setDefaultGatewayURL method sets a default value for the gateway URL, which
the createGatewayConnection method uses if you do not otherwise supply the Flash
Remoting service URL. For example:

NetServices.setDefaultGatewayURL("http://apps.mycompany.com/flashservices/gateway")
var gatewayConnection = NetServices.createGatewayConnection();

Because you set a default gateway URL, you do not always need to specify the gateway
URL elsewhere. However, you can override the default value by specifying a gateway
URL in the createGatewayConnection method or in the web page that calls your SWF
file.

Setting a default gateway URL provides you with the greatest flexibility in both
development and deployment. It lets you provide a URL that works when you test your
movie directly in the Flash development environment. It also lets you override the default
value with a server-specific gateway when you deploy your movie.

Note: If you specify localhost as the host in the setDefaultGatewayURL method, and you run
your Flash application from outside the Flash development environment or stand-alone
Flash player, Flash Remoting MX does not use localhost as the default gateway host.
Instead, it replaces localhost and any port specified in the setDefaultGatewayURL method
with the host and port specified to run the Flash application. For example, if you specify http:/
/localhost/flashservices/gateway in the setDefaultGatewayURL method and start your Flash
application by using the URL http://apps.mycompany.com:8500/flashapps/myapp.swf in a
web page or browser, Flash Remoting MX uses http://apps.mycompany.com:8500/
flashservices/gateway as the default gateway URL.
20 Chapter 2 Using Flash Remoting Components in ActionScript

Specifying the gateway in a web page

You specify the gateway in the web page that loads your SWF file by adding entries in the
OBJECT tag that calls the SWF file. You must use different techniques for Internet Explorer
and Netscape browsers:
• To specify the gateway for Internet Explorer, specify the gateway URL as a flashvars

parameter in an HTML PARAM tag inside the OBJECT tag body.
• To specify the gateway for Netscape, specify the gateway URL as a flashvars attribute

to the HTML EMBED tag that specifies the Flash application.

The following HTML example runs the myMovie.swf Flash application and specifies
http://apps.myCompany.com/flashservices/gateway as the URL for the Flash Remoting
services gateway. The first highlighted line contains the code for Internet Explorer. The
second highlighted line contains the code for Netscape.

<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"
codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/swflash.

cab#version=6,0,0,0"
WIDTH="100%"
HEIGHT="100%"
id="MyMovie">
<PARAM NAME="flashvars" VALUE="gatewayURL=http://apps.myCompany.com/

flashservices/gateway">
<PARAM NAME=movie VALUE="MyMovie.swf">
<PARAM NAME=quality VALUE="high">
<PARAM NAME=bgcolor VALUE="#000099">

<EMBED src="MyMovie.swf"
FLASHVARS="gatewayURL=http://apps.mycompany.com/flashservices/gateway"
quality=high bgcolor="#000099"
WIDTH="100%"
HEIGHT="100%"
NAME="movieName"
TYPE="application/x-shockwave-flash"
PLUGINSPAGE="http://www.macromedia.com/go/getflashplayer">

</EMBED>
</OBJECT>

Note: If you specify the Flash Remoting gateway in the web page, the ActionScript
#include NetServices.as directive must be on the main movie timeline, not in a movie clip.

Identifying the gateway

The specific format of the URL that you use to specify the gateway depends on the
application server to which you are connecting:
• If you are connecting to a Java server or Macromedia ColdFusion MX, use the

following format:
http://webServer[:port]/flashservices/gateway

In this URL, flashservices is the name of the Java application context, and gateway is
the servlet mapping. If you do not use the default Flash Remoting deployment
configuration, replace flashservices with the application context, and replace gateway
with the servlet mapping.

• If you are connecting to a .NET server, use the following format:
http://webServer[:port]/flashremoting/gateway.aspx
Configuring Flash Remoting MX 21

In this URL, flashremoting is the logical directory used for Flash Remoting MX, and
gateway.aspx is an intentionally blank file installed with Flash Remoting MX; the
aspx suffix identifies this as a .NET request. If you do not use the standard
installation configuration for Flash Remoting MX, you might need to change these
values to reflect your configuration.

Creating the service object
Before you access a service function, you must use the getService method of the
gateway connection object to create a service object in the Flash client. The
gatewayConnection.getService method takes the following two parameters:
• The service name.
• Optionally, the name of the Flash responder object that will receive the results. If you

omit the Flash responder, you must specify a Flash responder in each service function
call. For more information on considerations for specifying a Flash responder, see
“Handling service results” on page 27.

The following example shows the getService method for a weather service:

if (inited == null)
{

inited = true;
NetServices.setDefaultGatewayURL("http://localhost/flashservices/gateway")
gatewayConnection = NetServices.createGatewayConnection();
weatherService =

gatewayConnection.getService("flashExamples.weatherStation", this);
}

In this example, you create the weatherService service object.

By specifying this as the responder object, you specify that the current Flash object is also
the responder. It is a common practice to create the service object and define the
result-handler callback routines in a single Flash object.

Specifying a service

The service name format depends on the type of service you are using. The following
table lists how you specify service names for the supported service types:

Service type Service name Example

Web services (accessed through
ColdFusion or .NET servers)

URL of the WSDL file for the
service.

http://www.xmethods.net/sd/2001/
BabelFishService.wsdl

ASP.NET pages (.aspx) Logical directory path from the web
root. Replace all slash or backslash
characters in the path with periods.

FlashGateway.Samples.Weather
Service

DLL files (.dll) Fully qualified class name. Flashgateway.Samples.Weather
Service

EJBs JNDI name of the EJBHome
binding.

com.mycompany.samples.
WeatherService

Java classes, including JavaBeans Fully qualified Java class name. com.mycompany.samples.
WeatherService
22 Chapter 2 Using Flash Remoting Components in ActionScript

For example, to create a service object for the Babelfish web service, specify a line similar
to the following:

babelfishService = gatewayConnection.getService("http://www.xmethods.net/sd/2001/
BabelFishService.wsdl", this);

EJB considerations

If you are accessing EJBs directly from ActionScript, the gatewayConnection.
getService method returns the Home interface of the EJB. You must then use the Home
interface create method to access the EJB. For more information, see “Calling EJBs from
Flash” on page 100.

Authenticating to the application server
In some cases, your application server might require you to provide user authentication
—a user name and password—before you can use a service.

Flash Remoting MX provides the setCredentials method of the NetConnection object to
specify authentication credentials to send to the application server. Flash then sends the
credentials in the header of every service function call. This method is currently
supported on the following servers:
• ColdFusion MX
• JRun 4

To use the setCredentials method, call the method after you have created the gateway
object and before you call a service method. For a Flash application that is run by a single
user during a session, you can call the setCredentials method any time after creating the
gateway connection object, as follows:

#include "NetServices.as"
NetServices.setDefaultGatewayURL("http://www.mySite.com/flashservices/gateway");
gatewayConnection = NetServices.createGatewayConnection();
gatewayConnection.setCredentials(username, password)
serviceObject = gatewayConnection.getService("myService", this);

Note: To ensure security, never include specific user names or passwords in ActionScript.

Flash supplies the login credentials with each service request; therefore, your ActionScript
should log the user out of the application server and reset the credentials when the user
logs out of your Flash application.

Java servlets Web application context root. WeatherService

JMX (JRun 4 only) MBean object name. DefaultDomain:service=
DeployerService

ColdFusion pages (.cfm) Path from the web root to the
page’s directory. Replace all
forward slash or backward slash
characters in the path with periods.

Flashgateway.samples.Weather
Service

ColdFusion components (.cfc) Qualified ColdFusion component
name starting from the web root.

Flashgateway.samples.Weather
Service

Service type Service name Example
Configuring Flash Remoting MX 23

To log out the user and reset the credentials:

1 Call a logout service method on the server that logs out the user. (For example, for
ColdFusion, call a method that uses the cflogout tag.)

2 Set the gateway connection credential information to empty strings.

The following example shows these steps:

myService.logout();
gatewayConnection.setCredentials("", "");

The technique you use on the application server to authenticate the user and authorize
access depends on the application server.

Using authentication in ColdFusion MX

If you use ColdFusion MX, the setCredentials method causes Flash Remoting MX to
put the login ID and password in the ColdFusion page’s CFLogin scope whenever you
request a service. The Application.cfm page for the ColdFusion page or ColdFusion
component should process this information as necessary in a cflogin tag. For more
information on implementing security in ColdFusion, see “Securing access to
ColdFusion from Flash Remoting MX” on page 88.

Using authentication in JRun 4

Authentication in JRun 4 is only meaningful for EJBs, where you can use the
setCredentials method to enable access to secured EJB methods. You must configure
your application server for single sign on. The Flash gateway provides the security
credentials to the login module. For more information on authentication in JRun 4, see
“Using Flash Remoting MX with JRun security” on page 113.
24 Chapter 2 Using Flash Remoting Components in ActionScript

Calling service functions
To call the functions exposed by a service object, you use the service object name
followed by the application server functionality name. The following is an example:

weatherSvc.getTemperature("New York");

In this example, the getTemperature function exists in the application server as a public
method or application page. The function also passes a string parameter, New York. To
pass multiple parameters to service functions, you include a comma-separated list of
values in the service function call; for example:

weatherSvc.getTemperature("New York", 1998, "average");

In this example, the service function passes three parameters, a city (New York), a year
(1998), and a command (average).

Note: Parameters must be in the order required by the service function.

Specifying a responder object
If you do not specify a result handler when you create the service object, you must specify
a result-handler callback object for the service function when you call it. If you do specify
a result handler when you create the service object, you must not specify a result-handler
callback object for the service when you call it. Therefore, you must do either of the
following:
• Use a single object for all of a service’s methods.
• Specify a responder for each method.

Note: Do not specify a result handler both when you create the service object and when
you call a service method. If you specify the result handler in both places, Flash Remoting MX
passes an object representing the handler as the first argument to the service function. This
will cause errors in your application that might be difficult to diagnose.

To specify a result handler for a specific service function call, add the result handler as the
first entry in the function argument list, as in the following example:

weatherSvc.getTemperature(new temperatureResult(), "New York", 1998, "average");

In this case, the temperatureResult result handler will receive and process the results,
including any error status information, of the getTemperature service function.

For information on creating and using function-specific result handlers, see “Handling
service results” on page 27.

Calling functions using named arguments in ColdFusion
If you are calling a ColdFusion page or ColdFusion component that can take named
arguments, you can also call a service function and pass it a single ActionScript object
that contains name-value pairs for the arguments, as shown in the following example:

myService.myFunction({ dept: "Sales", name: "BobZ" });

The ColdFusion page or component uses the object elements, dept and name, as named
arguments. For more information on passing parameters to ColdFusion, see “Passing
parameters to ColdFusion components” on page 78.
Calling service functions 25

Specifying functions
The way you specify the service function name depends on the type of service you are
using. The following table lists how you specify the function names for the supported
service types:

Note: Calling web services using Flash Remoting MX is only supported in Flash Remoting
MX for .Net and in the Flash Remoting MX support included with ColdFusion MX. Flash
Remoting MX for Java and the Flash Remoting MX support in JRun do not support calling
web services using Flash Remoting MX.

Service type Function name

Web services (SOAP-based) Web service method exposed through
WSDL

ASP.NET pages (.aspx) ASP.NET page (without a suffix)

DLL files (.dll) Public method

EJBs EJBHome and EJBObject method

Java classes, including Java Beans Public method

Java servlets Servlet-name registered in the web.xml file

JMX (JRun 4 only) MBean method

ColdFusion pages (.cfm) ColdFusion page (without the cfm suffix)

ColdFusion components (.cfc) Component method
26 Chapter 2 Using Flash Remoting Components in ActionScript

Handling service results
When the service function results return from the application server, event handlers use
the returned data or handle the returned error information. For example, a result handler
could display the results in the Flash application, and an error handler could set trace
functions to report the error descriptions. This section describes how to handle result
data. The section “Handling errors” on page 31 describes how to handle error
information.

Result-handling hierarchy
Flash Remoting MX supports the following hierarchy of event handling:

1 If you specify a responder object in the NetConnection object getService method,
Flash Remoting MX does the following:
a If the responder has a function with a name of the form functionName_Result,

where functionName is the name of the service function that you called, Flash
Remoting MX returns the result for the function to that method.

b If the responder has a function named onResult, Flash Remoting MX returns the
result for the function to that function.

2 If you specify a responder object in the service function call, Flash Remoting MX
returns the result to that object’s onResult method.

Note: Do not specify a responder object in the gatewayConnection.getService method
and in the service function call. If you specify the responder in both places, Flash
Remoting MX passes the responder you specify in the service function method to the
service function as an argument. This behavior causes errors in your application.

3 When you test an application in Flash MX during development, if there is no
appropriate responder object method, Flash displays the results in a message window.

Result-handling strategies
The different types of result handlers provide you with a variety of result-handling
strategies you can use to match your application’s needs. The following sections describe
some of the techniques you can use:
• “Using the getService method to specify a responder”
• “Using the service function call to specify a responder”
Handling service results 27

Using the getService method to specify a responder

If you use the gatewayConnection.getService method to specify the responder object, you
can use the following techniques:
• Specify an object, typically the main movie this object, as the responder in the

gatewayConnection.getService method and create a separate _Result handler on the
main movie timeline for each service function. Use this technique if all of the
following conditions are true:

− The results of calls to one function name must be handled differently from the
results of calls to another function.

− All functions in all services that require different handling have unique names.
(For example, you do not use two services with identically named functions, such
as myFirstService.myFunction and myOtherService.myFunction, that require
different processing.)

− The results of all calls to a particular function in a service can be handled by a
single responder.

• Specify the main movie this object as the responder in the gatewayConnection.
getService method and create an onResult method on the main movie timeline to
handle some or all of the service function results. Use this technique if the results of
all requests for all service functions can be handled in the same manner.

• Use a combination of the previous two techniques. Specify the main movie this
object as the responder in the gatewayConnection.getService method, and create a
separate _Result handler for some service functions. Create a single onResult result
handler for the remaining service functions. Use this technique if the following are
true:

− The results of some service functions must be handled differently from the results
of other service functions.

− All functions in all services that require different handling have unique names.

− The results of several service functions with different names can be handled in the
same manner.

− The results of all calls to a particular function can be handled by a single
responder.

For an example of this technique, see the following section, “Example: using a
hierarchy of handlers”.
28 Chapter 2 Using Flash Remoting Components in ActionScript

Example: using a hierarchy of handlers

The following example shows how you can use the main movie as the responder and have
a common onResult result handler for some service functions, and function-specific
functionName_Result handlers for other functions. In this example, there are two
function-specific result handlers, getTemperature_Result and getForecast_Result, which
display the returned temperature and forecast in specific text boxes. The default onResult
response handler displays the result in a general-purpose message box.

// Initialization code, run once for each movie instance.
if (inited == null)
{

inited = true;
NetServices.setDefaultGatewayURL("http://localhost/flashservices/gateway")
gatewayConnection = NetServices.createGatewayConnection();
// Specify the main movie (this) as the default responder object.
weatherService = gatewayConnection.getService("flashExamples.weatherStation",

this);
}

// Function-specific result handlers
function getTemperature_Result(temperature)

{ temperatureIndicator.text = temperature; }
function getForecast_Result(forecast)
{ forecastIndicator.text = forecast; }
// Default response handler
function onResult(result)

{ generalMessageBox.text = result; }

// Call the service functions
weatherService.getTemperature("New York");
weatherService.getForecast("Chicago");
weatherService.getServiceStatus("San Francisco");
weatherService.getUsageStats();

Using the service function call to specify a responder

If you specify the responder when you call the service function methods, you can use the
following techniques:
• Define a responder object. Populate the responder object with result handler

functions, as described in any of the bullets in “Using the getService method to
specify a responder” on page 28. Pass a new instance of the responder object to the
gatewayConnection.getService method.
This technique is more object-oriented than using the this object as a responder, and
lets you program using more encapsulated code than the techniques in “Using the
getService method to specify a responder” on page 28.

• Define several unique responder objects. Populate the responder objects with
result-handler functions, as described in any of the bullets in “Using the getService
method to specify a responder” on page 28. Pass a new instance of one of these
responder objects to each serviceName.functionName call you make.
This technique lets you create function-specific responders where several services have
the same function names but return different data. It also lets you create several
Handling service results 29

different handlers that you can use, under different circumstances, with a single
service function.

For an example of this technique, see “Example: specifying unique result objects in
service function calls”, next.

• Use a combination of the previous two methods: use some responder objects for
multiple service functions and use unique responder objects for other service
functions.

Example: specifying unique result objects in service function calls

The following example rewrites the example in the “Example: using a hierarchy of
handlers” on page 29 to have the service function calls specify result handlers. There are
three response-handler objects: tempResult for the temperature, forecastResult for the
forecast, and generalResult for other service functions. Each result handler has one
function, onResult, to handle the result returned by the service.

// Initialization code, run once for each movie instance.
if (inited == null)
{

inited = true;
NetServices.setDefaultGatewayURL("http://localhost/flashservices/gateway")
gatewayConnection = NetServices.createGatewayConnection();
// Do not specify a default responder object when creating the service object.
weatherService = gatewayConnection.getService("flashExamples.weatherStation");

}

// Temperature result handler object
function tempResult()
{

this.onResult = function (temperature)
{ temperatureIndicator.text = temperature; }

}

//Forecast result handler object
function forecastResult()
{

this.onResult = function (forecast)
{ forecastIndicator.text = forecast; }

}

// General result handler object
function generalResult ()
{

this.onResult = function (result)
{ generalMessageBox.text = result; }

}

// Call the service functions and specify the result handler as the first argument.
weatherService.getTemperature(new tempResult(), "New York");
weatherService.getForecast(new forecastResult(), "Chicago");
weatherService.getServiceStatus(new generalResult(), "San Francisco");
weatherService.getUsageStats(new generalResult());
30 Chapter 2 Using Flash Remoting Components in ActionScript

Handling errors
Flash Remoting MX returns a Status event instead of a result if either of the following
happens:
• The Flash Remoting gateway encounters an error.
• A service function encounters an error (throws an exception).

You write status event handlers to respond to the errors, typically by displaying an error
message or logging the error information. In some cases, you might be able to include
recovery code, such as code to retry a call to a busy server, in the error handler.

The error object
When Flash Remoting MX receives a Status event, Flash passes an error object that
contains information about the error to the status event handler. The error object has the
following format:

Error-handling hierarchy
Flash Remoting MX supports the following hierarchy of error handling:

1 The initial error responder depends on whether you have specified the responder in
the service function or the getService call:

− If you specify the responder in the getService call, the following happens:
a. If the responder has a function with a name of the form functionName_Status,

where functionName is the name of the service function that you called, Flash
Remoting MX returns the status information for the function to that method.

b. If the default responder object specified in the getService call has a function
named onStatus, Flash Remoting MX returns the status to that function.

− If you specify a responder object in the service function call, Flash Remoting MX
returns the status to that object’s onStatus method. When you use this technique,
the responder object must also have an onResult method to handle the error.

2 If there is a function called _root.onStatus, Flash Remoting MX returns the status to
that function.

Key name Contents

code Currently, always “SERVER.PROCESSING”.

level Currently, always “Error”.

description A string that describes the error.

details A stack trace that indicates the processing state at the time of the
exception.

type The error class name.

rootcause A nested error object that contains additional information on the
cause of the error. Provided only if a Java servletException is
thrown.
Handling errors 31

3 If there is a function called _global.System.onStatus, Flash Remoting MX returns the
status to that function.

4 During development, Flash displays the status information in a message window.

This hierarchy adds two levels, items 2 and 3, to the result-handling scheme described in
“Result-handling hierarchy” on page 27. As a result, you can define handlers for all
otherwise-unhandled status events on a level or in the entire application.

Error-handling strategies
Flash applications use error-handling code less often than server applications, because
Flash does not report errors to the user when viewing movies. However, Flash Remoting
MX does make error information available to the movie ActionScript, and your
application can use this information. The error handling hierarchy lets you handle errors
with any degree of granularity. For example:
• You can use a global error handler to log error information if the status event cannot

be otherwise handled.
• You can display a message to the user in response to specific functions or specific

errors returned by specific functions.

Error handling can be particularly useful for remote services, because the user’s experience
depends on remote data that might not always be retrieved, and it might not be obvious
that data is not retrieved. Also, in some cases, the error-handling code can even recover
from a transient error. For example, if a service function fails due to a time-out, it might
be appropriate for the Flash application to try the request a second time. If the request
fails a second time, the movie could then display a message to the user and post a message
to the server to log the error.

The following section, “Example: error handling using unique result objects” shows how
you can apply error handling to a Flash Remoting MX application. For more information
about selecting from the status event-handling hierarchy, see “Result-handling strategies”
on page 27, which discusses strategies for selecting from the similar result-handling
hierarchy.

Example: error handling using unique result objects

The following example adds error handling to the example in the “Example: specifying
unique result objects in service function calls” on page 30. The error handlers for the
temperature and forecast display custom messages to the user. The general error handler
displays a generalized message. All handlers call a function to report the error to a log on
the server.

#include "NetServices.as"
#include "NetDebug.as"

// Initialization code, run once for each movie instance.
if (inited == null)
{

inited = true;
NetServices.setDefaultGatewayURL("http://apps.myco.com/flashservices/gateway")
gatewayConnection = NetServices.createGatewayConnection();
// Do not specify a default responder object when creating the service object.
32 Chapter 2 Using Flash Remoting Components in ActionScript

weatherService = gatewayConnection.getService("flashExamples.weatherStation");
}

// Temperature result handler object
function tempResult()
{

this.onResult = function(temperature)
{

temperatureIndicator.text = temperature;
}

this.onStatus = function (status)
{

temperatureIndicator.text = "No Temperature Available";
_global.logStatus(Status);

}
}

//Forecast result handler object
function forecastResult()
{

this.onResult = function (forecast)
{ forecastIndicator.text = forecast; }

this.onStatus = function (status)
{

forecastIndicator.text = "No Forecast Available";
_global.logStatus(Status);

}
}

// General result handler object
function generalResult ()
{

this.onResult = function (result)
{ generalMessageBox.text = result; }

this.onStatus = function (status)
{

generalMessageBox.text = "An error occurred. Please try later";
_global.logStatus(Status);

}
}

// Call the service functions and specify the result handler as the first argument.
// In a real application, these calls would be initiated by user actions in the
// Flash application.
weatherService.getTemperature(new tempResult(), "New York");
weatherService.getForecast(new forecastResult(), "Chicago");
weatherService.getServiceStatus(new generalResult(), "San Francisco");
weatherService.getUsageStats(new generalResult());
Handling errors 33

34 Chapter 2 Using Flash Remoting Components in ActionScript

CHAPTER 3

Using Flash Remoting Data in

ActionScript
This chapter describes how to handle data that your ActionScript send a to and receives
from service functions. It discusses how Macromedia Flash Remoting MX converts data
types, type-specific data handling issues, and how to use simple and complex data types.
It also discusses using RecordSet objects and other object types in detail.

Contents

• About Flash Remoting MX and data types... 36

• Converting from ActionScript to application server data types............................... 37

• Converting from application server data types to ActionScript............................... 39

• Working with objects... 43

• Working with RecordSet objects .. 46

• Working with XML... 57
35

About Flash Remoting MX and data types
When Flash Remoting MX sends data from a Flash application to an application server,
and when a server returns data to a flash application, the data is converted twice:
• In the Flash client, between ActionScript data types and Action Message Format

(AMF)
• At the server gateway, between Action Message Format and the native language of the

application (Java, C#, Visual Basic, or CFML).

The following figure shows this data conversion:

A two-step conversion process enables Flash Remoting MX to use a system-neutral,
efficient representation for the data it transmits. This way, you can create a Flash
application that can work with many back-end application servers.

Flash Remoting MX does all data conversions automatically. In most cases, the
conversion is straightforward; you simply pass the ActionScript data as arguments to a
remote service, and handle the returned data in your callback functions. In a few cases,
you must understand data type conversion considerations to ensure correct application
behavior. This chapter includes information about these considerations.
36 Chapter 3 Using Flash Remoting Data in ActionScript

Converting from ActionScript to application server data
types

Flash Remoting MX automatically converts between ActionScript data and the data types
specific to the application server programming environment.

In strictly typed environments, such as Java and C#, the service function data types must
correspond to (or be derived from) the listed data types. In loosely typed programming
environments, such as ColdFusion or Visual Basic, the environment must be able to use
the listed data type for the service function variable.

The following table lists the server data types into which the Flash gateway converts
ActionScript data types:

ActionScript Java C# Visual Basic SOAP ColdFusion MX

null null null Nothing null null (not defined)

ColdFusion uses
a null value
internally, but
reports an
undefined
variable

undefined null null Nothing null null (not defined)

Boolean Boolean System.Boolean Boolean boolean Boolean

Number Number Any numeric type,
as appropriate

Any numeric type,
as appropriate

decimal, float,
double,
integer, int

Number

String String System.String String string String

Date Date System.DateTime Date dateTime Date

Array
(contiguous
numeric indexes)

ArrayList System.Collections
.ArrayList

System.Collection
s.ArrayList

array Array

Associative
Array
(named indexes)

java.util.Map
(case-insensitive
implementation)

System.Collections
.Hashtable

System.Collection
s.Hashtable

Complex type Struct

RecordSet Cannot be sent
to Server

Cannot be sent to
Server

Cannot be sent to
Server

Cannot be
sent to Server

Cannot be sent
to Server

Object flashgateway.io.
ASObject (which
implements
java.util.Map)

FlashGateway.
IO.ASObject
(which implements
the ICollection
interface)

FlashGateway.
IO.ASObject

Complex type Struct

Object of type
FlashGateway.
IO.ASObject

For more
information, see
“Working with
ActionScript
typed objects”
on page 43
Converting from ActionScript to application server data types 37

ActionScript data conversion notes
The following is additional information on conversion from ActionScript data types to
server data types:
• Flash Remoting MX converts ActionScript Numbers to any valid Java or .NET

numeric data type wherever possible. If the number cannot be converted to the
service data type, for example, if the number exceeds the valid range of an integer
data type, Flash Remoting MX throws an error on the server.

• Flash Remoting MX can convert ActionScript data to Java boolean and numeric
primitive types that correspond to the listed class types.

• Flash Remoting MX treats all ActionScript arrays with non-contiguous indexes (for
example, arrays with indexes of 0, 2, and 3 but not 1) or with both numeric and text
indexes (for example, arrays with indexes of 0, 1, 2, “data1”, and “data2”) as
associative arrays. In these cases, it converts the numeric indexes to keys with
numbers as the strings (for example, “0”, “1”, “2”).

Object
consisting of
name-value pairs
passed as the
only argument to
a service
function

(Typically used
to pass data to
ColdFusion)

flashgateway.io.
ASObject

FlashGateway.
IO.ASObject

FlashGateway.
IO.ASObject

Complex type For a CFML
page — the Flash
Scope with the
object key
names being the
scope variables

For a ColdFusion
component
(CFC) — Each
name-value pair
is a named
argument to the
function

For more
information, see
“Accessing
ActionScript
objects” on page
73

XML org.w3c.dom.
Document

System.Xml.Xml
Document

System.Xml.Xml
Document

Cannot be
converted

XML

ActionScript Java C# Visual Basic SOAP ColdFusion MX
38 Chapter 3 Using Flash Remoting Data in ActionScript

Converting from application server data types to
ActionScript

Flash Remoting MX automatically converts between the data types specific to the
application server programming environment and ActionScript.

The following table shows how Flash Remoting MX converts data returned from the
application server to ActionScript data types:

C# Visual Basic SOAP ColdFusion MX Java ActionScript

null Nothing null N/A null null

bool

System.Boolean

Boolean boolean Boolean, 0, or 1

For details, see
“Boolean data in
ColdFusion” on
page 41

Boolean Boolean

any number type any number type decimal, float,
double

Val(Number)

For details, see
“Numeric data in
ColdFusion” on
page 41

Number Number

System.Char

System.String

Char

String

string String String

Character

String

See “Server
data
conversion
notes”

System.DateTime Date dateTime Date Date Date

System.Collections.
ICollection

object[]

System.Collections.
ICollection

object[]

array Array Collection

Object[]

array of primitive
types

Array

System.Collections.
Hashtable

System.Collections.
IDictionary

System.Collections.
Hashtable

System.Collections.
IDictionary

complex type Struct java.util.Map Associative
array

Sytem.Data.
DataSet

Sytem.Data.
DataSet

Complex type
(DataSet)

— — Associative
array of
RecordSet
objects

System.Data.Data
Table

System.Data.Data
Table

— Query object java.sql.Result
Set

RecordSet

— — — Query object
(Flash.pagesize
variable set)

flashgateway.
sql.Pageable
ResultSet

Paged
RecordSet
Converting from application server data types to ActionScript 39

Server data conversion notes
The following is additional information on conversion from server data types to
ActionScript data types:
• If a string data type on the server represents a valid number in ActionScript, Flash can

automatically cast it to a number if needed.
• If you use the setType method to assign an object type to a flashgateway.io.ASObject

object on the server, and the type name matches the name of a registered class in
ActionScript, Flash Remoting MX creates an instance of that type in ActionScript.
For more information see “Working with ActionScript typed objects” on page 43.

• To return multiple, independent, values to your Flash application, place them in a
complex server variable that can hold all the required data, such as a variable that
converts to a Flash Object, Array, or Associative Array type. Return the single variable
and use its elements in the Flash application.

FlashGateway.IO.
ASObject

System.Exception

FlashGateway.IO.
ASObject

System.Exception

Complex type A Java object as
listed in the next
column

flashgateway.io.
ASObject

Serializable

Dictionary

Throwable

Object

FlashGateway.IO.
ASObject with Type
property set

FlashGateway.IO.
ASObject with Type
property set

Complex type Java Object of
class
flashgateway.io.
ASObject with
Type property set

(Set the type using
a Java expression
once you create
the object using
CFML.)

flashgateway.io.
ASObject with
Type property
set

Typed Object

See “Server
data
conversion
notes”

System.Xml.
XmlDocument

System.Xml.
XmlDocument

— XML org.w3c.dom.
Document
flashgateway.io.
ASXMLString

XML

C# Visual Basic SOAP ColdFusion MX Java ActionScript
40 Chapter 3 Using Flash Remoting Data in ActionScript

ColdFusion to ActionScript data conversion issues
ColdFusion is a loosely typed or “untyped” language, where the data type of a variable
can be ambiguous. As a result, Flash Remoting MX cannot always determine how to
convert between ColdFusion data and ActionScript data. The following sections discuss
the limitations that this situation imposes, and how to prevent errors that can arise as a
result.

Boolean data in ColdFusion

If a ColdFusion page or CFC returns Boolean values, it represents these values as strings.
Flash does not have rules for converting strings to Boolean values. Instead, it converts the
string to a number, and then converts the number to a Boolean value. This operation
converts all representations of Boolean values except 1 to False. Therefore Flash converts
ColdFusion Boolean values of “Yes”, “True”, and True to False.

To return a Boolean value correctly from ColdFusion to ActionScript, do either of the
following:
• Return a 1 (True) or 0 (False) numeric or string value. For example, the following

function converts any ColdFusion Boolean value to value that ActionScript can use
correctly. (For simplicity, this example omits error-handling code.) Your ColdFusion
page can call this function before returning a Boolean value to Flash Remoting MX:
<cffunction name="convertBool">

<cfif Arguments[1] >
<cfreturn "1">

<cfelse>
<cfreturn "0">

</cfif>
</cffunction>

• Specify the returnType="boolean" attribute in the cffunction tag, as in the following
example. When a Flash application calls this ColdFusion function as a service, the
function returns a valid Boolean True value to Flash.
<cffunction name="getBool" access="remote" returntype="boolean">

<cfset foo = True>
<cfreturn foo>

</cffunction>

Numeric data in ColdFusion

If a ColdFusion page or CFC returns a numeric value without specifically identifying the
value as numeric, Flash Remoting MX treats the value as a string when passing it to the
responder. For example, if you have the following user-defined function and ActionScript
code, Flash displays 22, not 4, in the trace message:

ColdFusion:

<cffunction name="getNumber"access="remote">
<cfreturn 2>

</cffunction>
Converting from application server data types to ActionScript 41

ActionScript:

function getNumber_Result (result)

{
myVar = (result + 2);
trace (myVar);

}

To prevent such problems, do either of the following:
• Specify the returnType="numeric" attribute in the cffunction tag, as in the following

example:
<cffunction name="getNumber" access="remote" returnType="numeric">

<cfset foo = 2>
<cfreturn foo>

</cffunction>

• Use the Val function to explicitly convert the value to a number before you return it,
as in the following example:
<cffunction name="getNumber" access="remote">

<cfset foo = Val(2)>
<cfreturn foo>

</cffunction>

If you call either of these getNumber functions from Flash, the ActionScript
getNumber_Result function displays the value 4.
42 Chapter 3 Using Flash Remoting Data in ActionScript

Working with objects
When you pass a Flash object in a service function call, the object’s properties are sent to
the gateway. In Java environments, an instance of the flashgateway.io.ASObject class
(which implements java.util.Map) represents a Flash object. In .NET environments, an
instance of the FlashGateway.IO.ASObject class (which implements the ICollection
interface) represents a Flash object. Therefore, you can pass Flash objects to any service
function that accepts a Map or ICollection argument.

Because Flash Remoting MX transmits data only, the object methods are not available on
the server. Similarly, the object properties must be of types that Flash Remoting MX can
handle. For example, you cannot include a Flash RecordSet object in an object that you
pass to a service function, because Flash Remoting MX cannot convert the RecordSet
object to a data type on the server.

When you return an object from the server to Flash, Flash Remoting MX sends the
contents of the object’s data properties to Flash as a Flash object. In Flash, you can access
any of the object’s properties that are of types that can be converted to Flash types.

The following sections cover two special cases of objects: ActionScript typed objects and
Serializable Java objects.

Working with ActionScript typed objects
If you use the Object.RegisterClass method to register an object in ActionScript, you
create a typed object. Typed objects are useful in Flash applications for creating subclasses
of Flash objects. You can use typed objects in calls to Flash Remoting service functions.

If you use an instance of the object type in a service function call, the
Flashgateway.IO.ASObject object represents the argument on the server includes the
object type name.

For example, the following ActionScript creates a typed object and uses it in a service
function:

//Make a class (Class constructor)
myClass = function()
{

this.Value1 = "Test1";
}
//Register the class definition
Object.registerClass("testClass", myClass);

//Send instance of registered class to a Flash Remoting gateway service
myService.myFunction(new testClass());

When the service function on the application server receives this request, the argument is
an object of type flashgateway.io.ASObject in Java and ColdFusion, or
FlashGateway.IO.ASObject in .NET environments. The service function can access the
class type name, testClass, using the object’s getType method in Java or ColdFusion or the
ASType property in .NET.
Working with objects 43

When a service function must create a new typed object to return to Flash Remoting
MX, it creates an object of type flashgateway.io.ASObject in Java or ColdFusion, or of
type FlashGateway.IO.ASObject in .NET environments. The service function uses the
object’s constructor or setType method in Java, setType method in ColdFusion, or the
ASType property in .NET to set the class type name to the type specified in the
ActionScript Object.registerClass method.

When the Flash client receives the typed object from the service function, Flash runs the
constructor for the type and attaches all the object’s prototype functions.

The following example shows a Java class service function that creates a typed object and
returns it to Flash:

package mycompany.flash;
import flashgateway.io.ASObject;
public class MyFlashService
{

public MyFlashService()
 {
 }

public ASObject getFlashObject()
{

ASObject aso = new ASObject("MyFlashObject");
aso.put("first", "apple");
aso.put("second", "banana");
return aso;

 }
}

Note that this example specifies the object type, MyFlashObject, in the constructor.

To create a Flash typed object in ColdFusion, use the cfobject tag or the CreateObject
function, specifying the type as Java and class as flashgateway.io.ASObject. Then use the
object’s setType method to set the Flash object type name. The following CFML is the
equivalent to the Java code:

<cffunction access="remote" name="getFlashObject">
<cfobject type="JAVA" class="flashgateway.io.ASObject" name="myOb

" action="CREATE" >
<cfset myobj.setType("MyFlashObject")>
<cfset myobj.put("first", "apple")>
<cfset myobj.put("second", "banana")>
<cfreturn myobj>

</cffunction>
44 Chapter 3 Using Flash Remoting Data in ActionScript

Working with serializable Java objects
If a service function returns an object that implements the Java Serializable interface, its
public and private properties are available as ActionScript properties. For example, a Java
service method might return the following JavaBean as the result of a Flash Remoting
method invocation. In this case, all three private properties, text, recipient, and server, are
available to Flash.

public class Message implements java.io.Serializable
{

private String text;
private String recipient;
private String server;

public Message()
{

this.text = "Default message";
this.recipient = "user@macromedia.com";
this.server = "smtp.macromedia.com";

}

public String getText(){return this.text;}
public void setText(String t){this.text = t;}

public String getRecipient(){return this.recipient;}
public void setRecipient(String r){this.recipient = r;}

public Message getMessage()
{
return this;
}

}

You can use the following ActionScript to set and get the result object’s properties. (For
brevity, this example omits the code that configures the network connection and service
object.)

myBeanService.setText("Hello from Me.");
myBeanService.setRecipient("me@macromedia.com");
myBeanService.getMessage();

function getMessage_Result(result)
{
 myMessageText.text = result.text;

myServerInfo.text = result.server
}

In this case, ActionScript does not get the value of the Message.text property by explicitly
calling the getMessage method, but directly from the properties returned from the Flash
gateway on the server.
Working with objects 45

Working with RecordSet objects
Using Flash Remoting MX, you can return RecordSet objects from application servers,
manipulate the records in the RecordSet object, and display information from the records
in a Flash application. Typically, application servers create record sets from the results of a
database query. Some of the uses for RecordSet objects in ActionScript include the
following:
• Providing product catalog, employee directory, or other information from an

application server database query, and browsing the results in a Flash application
• Downloading a set of product options from the application server, and then using the

data to build an online catalog in a Flash application
• Retrieving personal data, such as buddy lists or e-mail messages, that are stored in a

database, and displaying the lists or e-mail messages in a Flash application

About record sets
A record set is a two-dimensional data table. The rows of the table correspond to
individual data records, such as the data for a particular product or employee. The
columns of the table correspond to different fields of a record, such as an employee’s title
or a product color. The following table shows a sample record set structure:

A RecordSet object represents a record set in Flash. It contains the following elements:
• An array of records
• The names of the columns
• A reference to the application server, if the record set is pageable

Note: For information on pageable record sets, see “Delivering RecordSet data to Flash
applications in ColdFusion MX” on page 53.

Typically, service functions return RecordSet objects to your Flash application. However,
you can also use ActionScript RecordSet methods to create and manage record sets
directly in ActionScript. The ability to create a RecordSet object enables you to create
custom client-side data structures for use in Flash UI Components. For more
information on using RecordSet methods, see the following section, “RecordSet
methods”.

You access record set rows using the row index, much like in an array. The first record is
at index 0, the second record is at index 1, and so on. Record indexes are relative. If you
insert a record into a record set, all the indexes of all records in the RecordSet object
starting with the index at which you insert the new record get incremented by one.

lastName firstName emailAddress telExt

Smith Dave dave.tomlin@macromedia.com 3456

Basham Meredith meredith.neville@macromedia.com 7890

Card Sean sean.carr@macromedia.com 1234

Randolph Themis themis.cripps@macromedia.com 5678

Sykes Andrew andrew.gruber@macromedia.com 9012
46 Chapter 3 Using Flash Remoting Data in ActionScript

RecordSet object records also have unique IDs that are never changed. If you insert a
record in a RecordSet object, it gets a new unique ID and all other record IDs are
unchanged. If you delete a record, its ID is deleted and is not reused. Flash Remoting
MX uses this ID internally, and you cannot use it to access a record, but you can use the
RecordSet.getItemID method to determine the ID for any record.

Note: You cannot send RecordSet objects to the application server.

RecordSet methods
You can use the following methods to create and manage RecordSet objects

Method Description

Constructor for RecordSet Creates a new local RecordSet object.

RecordSet.addItem Inserts a record into the RecordSet object.

RecordSet.addItemAt Inserts a record into the RecordSet object at the specified
index.

RecordSet.addView Defines an object that will receive notifications when the
RecordSet object changes.

RecordSet.filter Creates a new RecordSet object that contains selected
records from the original RecordSet object.

RecordSet.getColumnNames Returns the names of all the columns of a RecordSet
object.

RecordSet.getItemAt Returns a record if the index is valid and the record is
available.

RecordSet.getItemID Returns the record ID of a record.

RecordSet.getLength Returns the number of records in a RecordSet object.

RecordSet.getNumberAvailable Returns the number of records that have been
downloaded from the server.

RecordSet.isFullyPopulated
RecordSet.isLocal

Determine whether a RecordSet object is fully available on
the client system. (Both methods are equivalent.)

RecordSet.removeAll Removes all records from the RecordSet object.

RecordSet.removeItemAt Removes the specified record from the RecordSet object.

RecordSet.replaceItemAt Replaces a record at the specified index.

RecordSet.setDeliveryMode Changes the delivery mode of a pageable record set from
an application server.

RecordSet.setField Replaces one field of a record with a new value.

RecordSet.sort Sorts all the records using a comparison function that you
specify as an argument to the method.

RecordSet.sortItemsBy Sorts all records in the RecordSet object in ascending or
descending order, according to the current locale’s
sorting order.
Working with RecordSet objects 47

The following sections describe how you can use these methods to create and manage
RecordSet objects in ActionScript code.

Using RecordSet methods and properties
The following sections describe how to use RecordSet methods to manage RecordSet
objects.

Creating RecordSet objects

Most RecordSet objects are returned by service functions, so you do not typically have to
create them. However, you can use the RecordSet object constructor to create a record set
directly in ActionScript. For example, the following line creates a new RecordSet object
with two columns: DepartmentID and DepartmentName. This RecordSet object does
not contain any data:

myRecordSet = new RecordSet(["DepartmentID", "DepartmentName"]);

Getting values and information from RecordSet objects

The following sections describe how to get record set values and information.

Getting record set data values

To get a specific record in the RecordSet object, specify the record’s 0-based index in the
getItemAt method. For example, the following line gets the third record in a record set:

myRecord = myRecordSet.getItemAt(2);

To get the value of a specific field in a record, use the column name as a property of the
record. For example, use the following line to get the value of the DepartmentName field
of the fourth record in the RecordSet object named myRecordSet:

myDept = myRecordSet.getItemAt(3).DepartmentName;

Note: Because the RecordSet object is a subclass of the ActionScript DataProvider class,
you can also use RecordSet objects directly with any object that takes a DataProvider, such
as the ComboBox Flash UI Component. For more information on using RecordSet objects
with Flash UI components, see “Using Flash MX UI components with RecordSet objects” on
page 54.

Getting information about a RecordSet object

To get information about a RecordSet object, use the following methods:

Method Description

RecordSet.getColumnNames Returns an array of the names of the columns of a
RecordSet object.

RecordSet.getItemID Returns the record ID used internally by Flash Remoting
MX to identify the record.

RecordSet.getLength Returns the number of records in a RecordSet object.
48 Chapter 3 Using Flash Remoting Data in ActionScript

In the following example, theRecordSet represents a RecordSet object:

//Get an array of the column names and convert it to a comma delmited list
columns = theRecordSet.getColumnNames().join();
//The total number of records in the RecordSet
recordcount = theRecordSet.getLength();
//The number of records that are currently available to the Flash client
recordsavail = theRecordSet.getNumberAvailable();
//Have all the records been returned? (Only true if recordcount == recordsavail)
allthere = theRecordSet.isFullyPopulated();

Changing record set data

After you download all records into the RecordSet object or create a new RecordSet object
in ActionScript, you can use the RecordSet ActionScript class data-editing methods to
insert, update, and remove records. Changes to the RecordSet object in the Flash
application are not propagated back to the application server. To insert, update, or
remove records in a database, you must call application server methods or pages using
service functions.

Adding records to the RecordSet object

To add items to a RecordSet object, use the addItem or addItemAt methods. The
addItem method adds a record at the end of the record set. The addItemAt method
inserts a record at the specific index location; the indexes of all the other records in the
RecordSet object are automatically incremented by one. For example, the following adds
a single record at the beginning of the myRecordSet object:

var newRecord = {DepartmentID: "BA1EA7FF0-7D79-32D3-A9280050042189548",
DepartmentName: "Technical Publications"};

myRecordSet.addItemAt(0, newRecord);

Removing records from the RecordSet object

To remove records from a RecordSet object, use the removeItemAt and removeAll
methods. The removeItemAt method removes a record at a specific index location, and
the removeAll method removes all records from the RecordSet object. For example, the
following line removes the record at the first index location (0). The indexes of all the
other records in the RecordSet object are automatically decremented by one:

theRecordSet.removeItemAt(0);

RecordSet.getNumberAvailable Returns the number of records that have been
downloaded from the server.

RecordSet.isFullyPopulated
RecordSet.isLocal

Returns true if the RecordSet object was created locally
using the New operator or if the record set was returned by
a Flash Remoting service function and all the data in the
record set has been returned from the server.

A RecordSet object must be fully populated before you can
change its contents or use the RecordSet.filter method.

These two methods are currently equivalent.

Method Description
Working with RecordSet objects 49

Replacing and renaming records in the RecordSet object

To replace a record in a RecordSet object, you use the replaceItemAt method. To
replace a specific field in a record in a RecordSet object, use the setField method. For
example, the following code replaces the contents of the third record in the theRecordSet
RecordSet object with the contents of the newRecord variable. It then replaces the
contents of the third record’s DepartmentName field:

var newRecord = {DepartmentID: "BA1EA720-7D79-11D3-A9280050042189548",
DepartmentName: "Complaints";

theRecordSet.replaceItemAt(2, newRecord);
theRecordSet.setField(2,"DepartmentName","Compliments");

Using notifications with RecordSet objects

You can notify any ActionScript object of changes in a RecordSet object’s internal state.
For example, if you associate a RecordSet object with a ListBox component, and the
record set gets sorted into a different order, Flash can notify the ListBox component that
the record order changed, so the ListBox component can redraw itself according to the
new order.

Similarly, a RecordSet object can notify its associated ListBox component when all
records arrive from the server. Then, if required, the ListBox can redraw itself to update
its display.

Note: Flash UI components such as ListBox incorporate notifications as a standard part of
their use of the RecordSet ActionScript class. The addView method is only necessary if you
need to receive notifications in your own ActionScript code, for example, if you create your
own UI component.

To set up a notification event for an ActionScript object, use the RecordSet addView
method and specify the object to notify when the RecordSet object changes. You can
specify any object that receives change notifications in the addView method, as in the
following example:

myRecordSet.addView(contact_grid);

In this example, the myRecordSet object represents a record set returned from Flash
Remoting MX, and the addView method tells Flash Remoting MX to notify the
contact_grid object whenever the theRecordSet object changes.

The object that receives the notification must include a modelChanged callback function to
handle the notification. Whenever the RecordSet object changes, the modelChanged
function gets called with a message object that consists of one or more entries, as follows:
• The first, event, entry identifies the type of event or change that was made to the

record.
• For some types of events, the message object also includes entries identifying the first

and last record in the record set that were affected by the event.
50 Chapter 3 Using Flash Remoting Data in ActionScript

The following table describes the event messages:

The following example creates a modelChanged function that displays a trace message with
the event type and sets it up as the callback handler for changes to the myRecordSet
object:

function modelChanged(info)
{

trace("Caught modelChanged event: " + info.event);
}

myRecordSet = new RecordSet(["DepartmentID", "DepartmentName"]);
myRecordSet.AddView(this);

Sorting and filtering record sets

The RecordSet class has methods for sorting an existing RecordSet object or creating a
new RecordSet object from an existing one by applying a selection (filter) function.

Sorting record sets

To sort the records of a RecordSet object, use the sort and sortItemBy methods. The
sortItemBy method performs an ascending (the default) or descending sort on the records
in the RecordSet object. The sort method requires a comparison function as an
argument, and uses that function to sort the records. The sort method can be
substantially slower than the sortItemBy method.

Sorting a RecordSet object changes the order of the records in the object, but does not
otherwise change the object. Subsequent getItemAt method calls return records
according to the new order. After you sort a RecordSet object that was returned from an
application, the object no longer reflects the order of the records on the server-side record
set.

The following one-line example sorts the myRecordSet object according to the value of
the DepartmentName field in descending order:

myRecordSet.SortItemsBy("DepartmentName", "DESC")

Message object Description

{event: "sort"} The RecordSet object has been sorted.

{event:"updateAll"} The RecordSet object has changed in some way, such
as a new view being added.

{event:"addRows", firstRow:xxx,
lastRow:yyy}

Row numbers xxx through yyy have been added.

{event:"updateRows", firstRow:xxx,
lastRow:yyy}

Row numbers xxx through yyy have changed in some
way.

{event:"allRows"} All records have arrived from the server.

{event:"fetchrows", firstRow:xxx,
lastRow:yyy}

Row numbers xxx through yyy have been requested
from the server, but have not arrived yet.
Working with RecordSet objects 51

The following example shows how you can create a function that sorts the contents of a
ListBox UI component:

function SortBy(sorter)
{

temp = sorter.getSelectedItem();
sort_this = temp.data;
theRecordSet.sortItemsBy(sort_this);

}

In this example, sorter represents a ListBox UI component in the Flash application. In
the sortBy function, the getSelectedItem method returns the item selected in the
ListBox. Next, the function assigns the selected item to the sort_this variable. Finally, the
sortItemsBy method sorts the records according to the contents of the sort_this
variable. For an example of using the sort method, see “RecordSet.sort” on page 184.

Note: For RecordSet objects containing 2,000 or fewer records, the sort method
generally takes less than one second to finish on a Pentium 3 computer. The length of time to
sort RecordSet objects increases rapidly as the number of records grows.

Filtering an existing RecordSet object to create a new RecordSet object

The filter method creates a filtered view of a RecordSet object that contains only
records that conform to a set of rules specified by a selection (filter) function that you
define. Unlike the sort method, the filter method creates a new RecordSet object. The
original RecordSet object and its records remain unchanged.

The selection function that you define takes a record as the first argument, and can
optionally take a second argument to use to determine how to select the records. The
function must return a Boolean true or false value. Flash Remoting MX includes records
for which the selection function returns true in the filtered RecordSet object. When you
call the filter method, you pass it your selection function and, optionally, the value to
use as the selection function’s second argument.

The following example filters a RecordSet object to produce a new RecordSet object with
records that have contact fields that start with a specific letter:

var mySelectionFunction = function(aRecord, letter)
{

return (aRecord.contact.charAt(0) == letter);
}
contact_grid.setDataProvider(myRecordSet.filter(mySelectionFunction, theLetter));

In this example:
• The contact_grid variable represents a ListBox UI component.
• The myRecordSet variable represents a record set that has been retrieved by calling a

service function.
• The theLetter variable represents user input in the Flash application (a single letter).
• The mySelectionFunction function takes a record and a letter and returns true if the

first letter of the record matches the specified letter.
• The myRecordSet.filter method filters the myRecordSet object using the

mySelectionFunction function to create a new RecordSet object. Only those records
for which the mySelectionFunction function returns true are included in the new
RecordSet object.
52 Chapter 3 Using Flash Remoting Data in ActionScript

• The Contact_grid component’s setDataProvider method uses a filtered copy of
myRecordSet object generated by the myRecordset.filter method as the data provider
for the contact_grid ListBox.

Note: For RecordSet objects that with 2,000 or fewer records, the filter method
generally takes less than one second to finish on a Pentium 3 computer. The length of time to
filter RecordSet objects increases rapidly as the number of records grows.

Delivering RecordSet data to Flash applications in ColdFusion MX
By default, Flash Remoting MX returns a RecordSet object to the Flash client in a single
response when the application server finishes retrieving the data.

In ColdFusion MX, if you expect to return a large record set and the available data
transmission speeds are slow, such as when using dial-up modem, you can choose to
return a record set from the application server in increments. Incremental record sets are
also known as pageable record sets.

When you use pageable record sets, the following events occur:
• On the server, the record set is held in session data, and server-side Flash Remoting

RecordSet service provides access to the records.
• On the client, the RecordSet object can download records when needed by the Flash

application.

Flash Remoting MX can deliver pageable record set data to your application in three
modes, as described in the following table:

Data delivery
modes Description

ondemand

(default)

When you access a particular record using the getItemAt method, the
RecordSet object requests the record from the server-side Flash Remoting
RecordSet service.

page When you use the getItemAt method to access a record, the RecordSet
object fetches data one or more pages at a time.

You specify the number of records per page when you set the delivery
mode. The default page size is 25 records.

You can also tell Flash Remoting MX to get, or prefetch, a number of
pages of data that follow the page that contains the requested data. Flash
Remoting MX will store these additional pages in the client if it has not
already fetched them in a previous request. The default prefetch value is 0
(only get the page with the requested data).

For example, if you specify a page size of 15 records and a number of
pages to prefetch of 3, Flash Remoting MX automatically fetches 45
records when you make your first request for a record in the data set. If you
then request a record on the second page that was returned, Flash
Remoting MX prefetches an additional 15 records.

fetchall As a background activity, the RecordSet object fetches the entire contents
of the record set from the server, starting when the service function that
retrieves the record set on the application server returns.

You can specify a page size when you set the delivery mode to fetchall.
Flash Remoting continues requesting one page at a time from the server
until all pages have been returned. The default page size is 25 records.
Working with RecordSet objects 53

You change a RecordSet object’s delivery mode by calling the setDeliveryMode method,
as in the following example:

if (config_panel.deliveryMode.getData() == "page")
{

theRecordSet.setDeliveryMode("page", contact_grid.getRowCount(), 1);
}
else if (config_panel.deliveryMode.getData() == "fetchall")
{

theRecordSet.setDeliveryMode("fetchall", 10);
}
else
{

theRecordSet.setDeliveryMode("ondemand");
}

In this example, theRecordSet object represents the record set returned from Flash
Remoting MX, and the config_panel object represents a Flash movie clip. Using the
deliveryMode.getData method, the code evaluates the delivery mode specified by
config_panel, and uses the setDeliveryMode method to set the mode of delivery for the
theRecordSet object.

If the config_panel object specifies page mode, the setDeliveryMode method tells Flash
Remoting MX to set the page size to the number of rows in the contact_grid movie clip
and to prefetch one additional page beyond the page with the requested data, if it is not is
not in memory.

If the config_panel object specifies fetchall mode, the setDeliveryMode method tells
Flash Remoting MX to set the page size to 10 records and start getting the records, one
page at a time (if they are not already on the client), until the entire record set has been
fetched.

For all delivery modes, after a record is received from the application server, it is held
inside the RecordSet object. Any subsequent getItemAt calls immediately return the
record. Any getItemAt calls for records that the client has not yet received fetch the
requested record as soon as possible and return a fetch pending message.

Using Flash MX UI components with RecordSet objects
Many Flash MX UI components can use RecordSet objects to provide both label and data
information. These components use Flash DataProvider objects to supply the following
information:
• Label values that appear to the user
• Corresponding data values that are available by using the component’s getValue

method after the user selects a label
54 Chapter 3 Using Flash Remoting Data in ActionScript

Objects that can use DataProvider objects are often referred to as data consumers Flash
components that can be data consumers currently include the following:

The Flash UI Components Set 2 and Charting components are downloadable from the
Flash exchange at http://dynamic.macromedia.com/bin/MM/exchange/
main.jsp?product=flash.) Additional UI objects might be available at the Macromedia
Flash Exchange.

The following sections describe how to use the RecordSet objects with these components.

Using RecordSet objects directly

You can use RecordSet objects directly in the setDataProvider method of a data consumer
component to specify that the RecordSet object provides the component’s values.

The following example is a result handler for a getProductList service function that gets a
single-column record set that contains product names. It populates a ListBox component
with the returned RecordSet object’s records:

function getProductList_Result (result)
{
 catalogListBox.setDataProvider(result);
}
catalogService.getProductList();

By default, each label value is a comma-delimited string that consists of the contents of
one record’s fields; the data values do not get set. However, you can use a RecordSet object
directly in the setDataProvider method to provide both the list and data values if the
record set has two columns and the column names are label and data. For example, the
following SQL code produces a record set that, when passed to the preceding
getProductList_Result function, populates the catalogListBox object with both label and
data values:

SELECT COST_CENTER AS DATA, DESCRIPTION AS LABEL
 FROM EMPDB_DEPARTMENT
 WHERE STATUS='Active'

Standard Flash UI components

FListBox FComboBox

Flash UI Components Set 2

FTicker FTreeNode

FTree

Charting Components

FBarChart FPieChart

FLineChart
Working with RecordSet objects 55

Using DataGlue methods

The DataGlue methods, bindFormatStrings and bindFormatFunction, let you specify
how a RecordSet object supplies the contents of both the data and value fields of a data
consumer. The DataGlue methods provide substantial flexibility in formatting the
contents of the labels and data, as follows:
• The bindFormatStrings method lets you independently specify strings that contain

any number of record set fields and other data as the sources of the label and data
contents.

• The bindFormatFunction method lets you specify any function to provide the data to
the data consumer. The function must take a record as an argument and return an
object that consists of two entries: a label field and a data field. The function has full
flexibility in using the record contents to generate and format the label and data
values.

The DataGlue methods do not make a copy of the DataProvider object. However, the data
is fetched from the data provider as needed by the component.

Using the bindFormatStrings method

The bindFormatStrings method lets you freely format record fields and string data. For
example, the following method uses values from two fields to generate the labels and
from three fields to generate the data values:

DataGlue.bindFormatStrings (myComboBox, myRecordSet, "#parkname# (#parktype#)",
"#city#, #state# #zipcode#");

In this example, myComboBox represents a ComboBox component in the Flash
application, and myRecordSet represents the RecordSet object. The parkname, parktype,
city, state, and zipcode variables represent record field names. The Flash application
displays the parkname and parktype variables in the ComboBox. The city, state, and
zipcode variables are returned when the user selects the record and ActionScript code uses
a getValue, getSelectedItem, or similar, method.

Using the bindFormatFunction method

The bindFormatFunction method lets you call a function to format the data for your
data consumer. Your function must take a record as its argument and return an object
with the following format:

{label: labelValue, data: dataValue};

For example, the following formatting function takes a record that includes a parkname
field. It converts the parkname text to all lowercase as the label, and uses the field’s length
as the data. The bindFormatFunction method uses the output of this function to populate
a Flash UI component:

function myFormatFunction (record)
{

// the label is the parkname record field, translated to lowercase
var theLabel = record.parkname.toLowerCase();

// the data is the length of the parkname record field
var theData = record.parkname.length;
56 Chapter 3 Using Flash Remoting Data in ActionScript

// return the label and value to the caller
return {label: theLabel, data: theData};

}
//call the bindFormatFunction method
DataGlue.bindFormatFunction(dataView2, result, myFormatFunction);

Working with XML
When you use Flash Remoting MX you can use either of the following patterns for
handling XML data:
• You do not use XML in Flash. The Flash application sends information to the server

using simpler data types, including objects if needed. The service functions can
generate and manipulate XML data as necessary. They convert any XML to simpler
data types to return to your Flash application.

• You use XML directly in Flash. The service functions get XML from, and return
XML to, the Flash application. Your Flash application uses ActionScript XML objects
and methods to generate and manipulate XML as needed.

Your decision as to which method to use should depend on whether it is preferable in
your environment to do more processing in the server or in the client Flash application.
For example, many application servers, such as ColdFusion, provide tools that are
specifically optimized for XML manipulation. Therefore, although Flash includes
support for XML objects and provides methods for manipulating them, you might find it
more efficient to process complex XML on your server and send the processed data to
Flash in custom objects, rather than having your service functions return XML to Flash.
However, if you are using Flash Remoting MX to call a service that returns XML, you
can use the Flash XML methods to access the XML directly.

If you do use XML objects in your Flash application, Flash Remoting MX converts
between the Flash XML objects used on the client and the standard XML document
object type for the application server: System.Xml.XmlDocument in .NET
environments, org.w3c.dom.Document in Java, and XML document objects in
ColdFusion.

The following example sends the contents of two input boxes in an XML object. The
first XML element has the contents of the first text input; this element has a single child
that has the contents of the second text box. The server echoes the XML back to the
Flash application, and the testDocument_result result handler concatenates the contents
of the two nodes to create a single string for the output box.

//Function that runs when the user clicks a "Run XML" button after entering text in
//two text boxes
function testDocument()
{

//Create the XML document.
xmlDocument = new XML();
firstElement = xmlDocument.createElement("TEST");
firstElement.attributes.message = input1.text;
secondElement = xmlDocument.createElement("INSIDETEST");
secondElement.attributes.message = input2.text;
firstElement.appendChild(secondElement);
Working with XML 57

xmlDocument.appendChild(firstElement);

//Call the service function and pass it the XML document
flashtestService.testDocument(xmlDocument);

}

//Result Handler callback function to handle the results returned by Flash Remoting
function testDocument_Result(result)
{

// result is an XML object
// for this example, get an attribute from the first node
output.text = result.firstChild.attributes["message"] +

result.firstChild.firstChild.attributes["message"];
}

Note: Because the Flash XML object is a standard Flash object and not part of Flash
Remoting MX, this document does not cover the details of using XML objects in Flash. For
more information on using the Flash XML objects, see the Flash online Help.
58 Chapter 3 Using Flash Remoting Data in ActionScript

CHAPTER 4

Using the NetConnection Debugger
This chapter describes how to use the NetConnection Debugger and the NetDebug and
NetDebugConfig classes to debug your Flash Remoting application. It includes a brief
description of the NetConnection Debugger interface and descriptions of the types of
events that the debugger can display. It also documents how you can use the NetDebug
class to control the information displayed in the NetConnection Debugger, including
displaying Trace events.

Contents

• About the NetConnection Debugger ... 60

• NetConnection events ... 61

• Using the NetConnection Debugger in ActionScript ... 66
59

About the NetConnection Debugger
To debug Flash Remoting applications, you use the NetConnection Debugger in the
Flash MX authoring environment. The NetConnection Debugger shows calls and
responses from the following:
• Flash Player
• Flash Remoting MX
• Flash Communication Server
• Application server

Note: This document does not cover using the NetConnection Debugger with Macromedia
Flash Communication Server applications.

To use the NetConnection Debugger with your Flash Remoting application, include the
following line in the ActionScript for the first frame of your main movie:

#include NetDebug.as

To open the NetConnection Debugger, select Window > NetConnection Debugger in
the Flash MX authoring environment.

The following figure shows the NetConnection Debugger:

This document does not describe the NetConnection Debugger interface in detail. For
more information about the NetConnection Debugger interface, see the online Help. To
access the online Help, click the blue question mark (?) button in the upper right of the
panel.
60 Chapter 4 Using the NetConnection Debugger

NetConnection events
The NetConnection Debugger can display information about a variety of events, and
you can select which types to display. The following sections describe the event types and
the information that the event messages for different types provide.

NetConnection event types
The NetConnection Debugger displays information about events belonging to three
categories of event: client, app_server, and flashcomm_server, and each category has one
or more specific event types. You can enable or disable all events in a category, or specific
event types.

Note: The Network Connection Debugger Filters panel provides the best method to select
which events to display. However, you can use ActionScript to enable or disable specific
event types for individual NetConnection objects. For more information on using
ActionScript to enable or disable event information, see “Configuring debugger output in
ActionScript” on page 66.

The following table lists types of events that the NetConnection Debugger displays:

Event type Description

client
(default = true)

Activity information sent from the client.

For detailed information on client debug events, see “client event
messages” on page 63.

You can selectively enable and disable the following subcategories
of client events.

trace
(default = true)

Client NetConnection trace events. If client trace reporting is
enabled, the NetConnection Debugger displays the output of
NetConnection.trace and NetDebug.trace methods.

http
(default = true)

Client NetConnection events that communicate with the remote
source using HTTP. These events include connecting to the
server, and Flash Remoting service calls and result returns.

recordset
(default = true)

Events associated with the delivery of pageable record set data to
the client. These events occur only if the record set is pageable.

rtmp
(default = true)

Client NetConnection events that communicate with the remote
server using Real-Time Messaging Protocol (RTMP).
Communication with the Flash Communication Server uses
RTMP. Flash Remoting MX does not use RTMP.

app_server
(default = true)

Information about events on the application server. This category
includes activities reported by the server itself and Flash Remoting
gateway activities.

For detailed information on server debug events, see “app_server
event messages” on page 64.

 You can selectively enable and disable the following
subcategories of app_server events.

trace
(default = true)

Server trace events. Not currently used.
NetConnection events 61

Common event information
The following table describes the information that the NetConnection Debugger
displays for all events. Two fields, DebugID and Protocol, are not used for trace events
initiated by the Netdebug.trace method.

error
(default = true)

Server error events. These include any errors generated during the
execution of the Flash Remoting gateway or adapters.

httpheaders
(default = false)

Server HTTP header events. When enabled, the NetConnection
Debugger reports a server HTTP header event for each HTTP
request.

amfheaders
(default = false)

Action message Format (AMF) header events. When enabled, the
NetConnection Debugger reports a server AMF request header
event and a server AMF response header event for each AMF
request and response. A single AMF request can include multiple
service function calls.

amf
(default = false)

Server AMF events. When enabled, the NetConnection Debugger
reports a server AMF method call event and a server AMF method
response event for each service function call and response.

recordset
(default = true)

Events associated with the partial delivery of pageable record set
data from the server. These events occur only if the record set is
pageable.

coldfusion
(default = true)

ColdFusion debug events. When enabled, any debug events
enabled in ColdFusion are reported to the NetConnection
Debugger. If ColdFusion debugging information is not enabled in
ColdFusion, a single debug error event that notifies the developer
that ColdFusion debugging information has not been enabled on
the server is returned per transaction. For more information on
configuring debugging information in ColdFusion, see the
ColdFusion documentation.

flashcomm_server/
realtime_server

(default = true)

Information about Macromedia Flash Communication Server MX
events. This option is not used for debugging Flash Remoting
applications.

Note: The user interface uses the term flashcomm_server. In
ActionScript, you must use realtime_server.

You can selectively enable and disable the following subcategory
of events.

trace
(default = true)

Flash Communication Server trace events.

Event type Description

Field Description

DebugID The DebugID specified in a NetConnection.SetDebugID method for
the connection being used. If you do not use the SetDebugID
method, Flash Remoting MX sets this ID to a numeric value.

Not displayed for NetDebug.trace events.

EventType A string identifying the type of event being reported.
62 Chapter 4 Using the NetConnection Debugger

client event messages
The following table describes the specific client events that the NetConnection Debugger
reports, and the information it displays for each event:

MovieUrl The URL of the Flash application associated with the event.

Protocol The protocol used for communication with the server. The value is
http for all Flash Remoting applications.

Not displayed for NetDebug.trace events.

Source The source of the event; always Client.

Time A numeric millisecond timestamp that indicates when the event
occurred.

Date The date and time when the event occurred, including information
about the time value’s offset from Universal Time (also known as
GMT or UTC).

Field Description

Event type Description Information fields

Trace Flash executed a
NetDebug.trace or
NetConnection.trace
method.

Trace The object passed to the
NetDebug.trace or NetConnection.trace method.
Typically a message.

Connect The Flash application
requested a connection to
the gateway.

ConnectString The connection string sent to
the gateway. The gateway URL.

AddHeader The Flash Remoting client
added an additional
header that is sent with
each message to the
gateway. This event
occurs when you use the
NetConnection.
SetCredentials method.

HeaderName The type of header being sent,
such as Credentials.

MustUnderstand A Boolean value that
specifies whether the server must understand
and process this header before can handle any
following headers or messages.

HeaderObject The object that will be sent in
the added header. For example, the password
and user ID.

Result Flash Remoting MX
received a result message
from the gateway.

Result The object sent by the gateway in
response to the request.

Status Flash Remoting MX
received an error
message from the
gateway.

Status An error object that describes the error.
For more information about the error object, see
“The error object” on page 31,
NetConnection events 63

app_server event messages
The following table describes the specific app_server events that the NetConnection
Debugger reports and the information it displays for each event:

Call Flash Remoting MX sent
a service function call to
the gateway.

MethodName The service function being
called.

Parameters The arguments to the service
function call.

Close Flash Remoting MX
closed the connection to
the gateway. Initiated by a
Netconnection.close
method.

None.

Event type Description Information fields

Event type Description Information fields

Error An unhandled error
occurred in the Flash
Remoting gateway or
adapter. These errors
should not occur in normal
processing.

Data Any object associated with the error
event. Normally an Exception object.

Message A message that describes the
error.

HttpRequest
Header

The gateway received an
HTTP request.

HTTPHeaders The contents of the HTTP
request headers.

AmfRequest
Header

The gateway received an
AMF request message.
Each HTTP request
received by the gateway
includes an AMF request.

AmfHeaders — The contents of the AMF
headers. The headers include the Credentials
header, if the Flash Application uses the
SetCredentials method, and the
amf_server_debug header, which contains the
NetConnection Debugger app_server
debugging settings.

AmfResponse
Header

The gateway returned a
response to the Flash
Remoting client. This
event occurs for each
HTTP request.

AmfHeaders The contents of the AMF
headers sent in the response, if any. The
gateway returns a header if the client does not
support cookies and URL rewriting is being
used for session management.

AmfMethod
Call

The gateway received a
service function call. A
single AMF request can
contain multiple AMF
method calls.

MethodName The service function being
called.

Response URI The client-side identifier for
the responder. This value is internally
generated by Flash Remoting MX.

Parameters The arguments passed to the
service function.
64 Chapter 4 Using the NetConnection Debugger

ColdFusion event messages

If you enable debugging output in ColdFusion, the NetConnection Debugger can report
a subset of the debugging information that is normally displayed by the ColdFusion
server. The NetConnection Debugger can report the following ColdFusion debugging
information:
• Template (for CFM pages only, not CFCs)
• Execution time
• SQL query
• cftrace tag output
• Exceptions (for exceptions caught in ColdFusion only)
• HTTP (for cfhttp tag)

Note: The NetConnection Debugger displays an information event reporting that
ColdFusion debugging is not enabled on the server if debugging is enabled but no
debugging information is available, for example, if an error occurs when running a CFML
service function.

For more information on ColdFusion debugging information, see Developing ColdFusion
MX Applications with CFML.

Flash Communication Server events
If you enable Flash Communication Server (flashcom_server) debugging events, the
NetConnection Debugger displays an event message when the Flash Communication
Server application calls a trace function. The message includes the trace call parameter
and the Flash Communication Server logging API Info object for the event.

AmfResponse
Call

The Flash gateway sent
result data to the client.

MethodName The Response URI identified
by the AmfMethodCall message, followed by
/onResult.

Response URI Normally “(undefined)”.

Parameters — The data returned by the
service function.

AmfStatusCall The flash gateway or
application server threw
an exception.

MethodName The Response URI identified
by the AmfMethodCall message, followed by
/onStatus.

Response URI Normally “(undefined)”.

Parameters An error object that describes
the error. For for more information about the
error object, see “The error object” on page 31.

Information Server or AMF status
information.

Message A message that provides
information about the status.

Event type Description Information fields
NetConnection events 65

Using the NetConnection Debugger in ActionScript
Flash Remoting MX provides several objects and methods that let you control the
information that appears in the NetConnection Debugger. These tools include the
following:
• The NetDebug.trace method, to display trace messages in the debugger
• NetConnection object methods, to provide debugging information for specific

connections
• The NetDebugConfig object, to select the information that the debugger displays

Using the NetDebug.trace method
The NetDebug.trace method displays a trace message in the NetConnection Debugger.
For example, the following trace method displays a trace message with the text “I just
created myService.” in the NetConnection Debugger:

NetDebug.trace("I just created myService.");

The argument to the trace method is not limited to a string. It can be a Flash Object. For
example, you can use the trace method to report the values of multiple variables, as in
the following code:

NetDebug.trace({arg1value:arg1, arg2value:arg2});

Using connection-specific debugging methods
If your application uses multiple connections, you can use the debugging-related
methods of each NetConnection object to debug the individual connections.

The setDebugID method creates an ID that is displayed in the NetConnection
Debugger output for events associated with the specific NetConnection object; for
example:

gatewayConnection.setDebugID("Gateway Connection");

You can send a trace message that includes the connection ID by using the
GatewayConnection object’s trace method, as in the following example:

myGatewayConnection.trace("I just created myService2 over this connection.");

Additionally, the getDebugID method returns the ID set by the setDebugID method, and
the getDebugConfig method returns the NetDebugConfig object for the specific connection.
For more information on using the getDebugConfig method, see the following section,
“Configuring debugger output in ActionScript”.

Configuring debugger output in ActionScript
You can specify the information that the NetConnection Debugger displays by selecting
options on the debugger Filters panel, or you can do it programmatically in ActionScript.
This document describes how to use ActionScript. For information on using the Filters
panel, see the Flash online Help.

In ActionScript, you configure NetConnection Debugger output for each connection
individually. As a result, if your Flash Remoting application has multiple connections,
you can configure different levels of debugging detail for each connection.
66 Chapter 4 Using the NetConnection Debugger

To configure debugging output:

1 Use the NetConnection getDebugConfig method to get the connection’s
NetDebugConfig object.

2 Set the required property of the NetDebugConfig object. The table in
“NetConnection event types” on page 61 specifies the properties you can set.

You can combine both steps in a single line, as in the following example, which turns off
application server AMF debugging messages:

gatewayConnection.getDebugConfig().app_server.amf = false;

Note: You can only use this technique to select or disable individual event types. You
cannot use a single call to select or disable all debugging information for the client,
application server, or Flash Communication Server.
Using the NetConnection Debugger in ActionScript 67

68 Chapter 4 Using the NetConnection Debugger

CHAPTER 5

Using Flash Remoting MX with

ColdFusion MX
To use Macromedia Flash Remoting MX with Macromedia ColdFusion MX, you build
ColdFusion pages or ColdFusion components. In ColdFusion pages, you use the Flash
variable scope to interact with Flash applications. ColdFusion components natively
support Flash interaction. In addition, you can use ColdFusion’s server-side ActionScript
functionality, which lets you query databases and perform HTTP operations in
ActionScript files on the server.

Contents

• Using Flash Remoting MX with ColdFusion pages.. 70

• Using Flash Remoting MX with ColdFusion components 77

• Using Flash Remoting MX with server-side ActionScript....................................... 82

• Calling web services from Flash Remoting MX.. 86

• Securing access to ColdFusion from Flash Remoting MX 88

• Handling errors with ColdFusion .. 90
69

Using Flash Remoting MX with ColdFusion pages
When developing ColdFusion pages for use with Flash Remoting MX, you need to know
how to do the following:
• Determine the Flash service name for the ColdFusion page
• Pass parameters back and forth between the Flash application and the ColdFusion

page
• Return information to a Flash application from a ColdFusion page

The following sections describe how to perform these actions.

Determining the Flash service name
When building a ColdFusion page called from Flash applications, the directory name on
the server containing the ColdFusion page translates to the service name called in
ActionScript from Flash. The ColdFusion page names contained in that directory
translate to service functions in ActionScript.

For example, you create a ColdFusion page named helloWorld.cfm in the directory
helloExamples under your web root (web_root/helloExamples). You then use the
following ActionScript in your Flash application to call helloWorld.cfm:

#include "NetServices.as"
NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");
gatewayConnection = NetServices.createGatewayConnection();
CFMService = gatewayConnection.getService("helloExamples", this);
CFMService.helloWorld();

To specify subdirectories of the web root directory or a virtual directory, use package dot
notation. If helloWorld.cfm was in the directory web_root/helloExamples/ColdFusion,
you use the following ActionScript to create the service:

CFMService = gatewayConnection.getService("helloExamples.ColdFusion", this);

Remember to use periods to delimit directory names for getService().
70 Chapter 5 Using Flash Remoting MX with ColdFusion MX

Using the Flash scope to pass parameters to ColdFusion pages
ColdFusion MX defines a scope called Flash that you use to access parameters passed
from Flash applications and return values to Flash applications.

The Flash scope has several predefined variables that you can use to pass information, as
described in the following table:

When you call a ColdFusion page from a Flash application, the Flash Remoting gateway
converts ActionScript data types to ColdFusion data types. The data type of any results
returned from ColdFusion to the Flash application are converted to ActionScript data
types. For more information on this conversion, see Chapter 3, “Using Flash Remoting
Data in ActionScript” on page 35.

Using Flash.Params to access parameters in a ColdFusion page

The Flash.Params array contains one element for each parameter passed from
ActionScript, in the order that the parameters were passed to the ColdFusion page. You
use standard ColdFusion array syntax to reference the parameters.

For example, the following ActionScript call passes three parameters:

myService.myMethod(param1, param2, param3);

In your ColdFusion page, you access these parameters using Flash.Params, as follows:

<cfset p1=Flash.Params[1]>
<cfset p2=Flash.Params[2]>
<cfset p3=Flash.Params[3]>

The following ActionScript calls a ColdFusion page to execute a query. The ActionScript
passes a single parameter to the ColdFusion page:

NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");
gatewayConnection = NetServices.createGatewayConnection();
myService = gatewayConnection.getService("doc_code", this);

myService.query1param("RipperStik");

Variable Description For more information

Flash.Params Array containing the parameters passed
from the Flash application to the
ColdFusion page. If you do not pass any
parameters, Flash.Params still exists, but it
is empty.

See “Using Flash.Params to
access parameters in a
ColdFusion page” on page 71.

Flash.Result* Result returned to the Flash application
from the ColdFusion page.

See “Returning results to
ActionScript” on page 74.

Flash.Pagesize Number of records in each increment of a
record set returned to Flash from a
ColdFusion page.

See “Returning record sets to
Flash” on page 75.

* Due to ActionScript's automatic type conversion, do not return a boolean literal to
Flash from ColdFusion. Return 1 to indicate true, and return 0 to indicate false.
Using Flash Remoting MX with ColdFusion pages 71

In your ColdFusion page, you access the parameter using Flash.Params, as shown in the
following example:

<cfquery name="flashQuery" datasource="exampleapps" >
 SELECT ItemName, ItemDescription, ItemCost
 FROM tblItems

WHERE ItemName='#Flash.Params[1]#'
</cfquery>

<cfset Flash.Result=flashQuery>

Because ColdFusion converts an ActionScript data type to the corresponding ColdFusion
data type, you can perform CFML type-specific operations on the parameter. Therefore,
if a parameter passed from a Flash application is an ordered array, you can perform all
CFML array operations on the parameter.

For example, if you pass an array using the following ActionScript:

var array1 = new Array();
array1[0] = "zero";
array1[1] = "one";
myService.myMethod(array1, param2, param3);

You access the elements in the array in your ColdFusion page using ColdFusion array
notation, as follows:

<cfset arrayElement1=Flash.Params[1][1]>
<cfset arrayElement2=Flash.Params[1][2]>

Note: While ActionScript starts the array index at zero, ColdFusion array indexes start at
one.

ActionScript also supports named, or associative, arrays. These arrays have the following
form:

var struct1 = new Array();
struct1["zero"] = "banana";
struct1["one"] = "orange";
myService.myMethod(struct1, param2, param3);

ColdFusion converts associative arrays into ColdFusion structures. To access the
associative array elements from Flash.Params, you use structure notation, as follows:

<cfset structElement1=Flash.Params[1].zero>
<cfset structElement2=Flash.Params[1].one>

Note: You can use most of the CFML array and structure functions on ActionScript
collections. However, one CFML function, StructCopy, does not work with ActionScript
collections.
72 Chapter 5 Using Flash Remoting MX with ColdFusion MX

The following table describes ActionScript collections and how to access them in
ColdFusion pages:

Accessing ActionScript objects
ActionScript supports the object initializer syntax when calling a function. For example,
the following function call passes two parameters as objects:

myService.myMethod({x:1, y:2});

In this example, the function passes x with a value of 1 and y with a value of 2.

In your ColdFusion page, you can access objects using the object name, as in the
following example:

<cfset param1=Flash.x>
<cfset param2=Flash.y>

You can also pass arrays and structures using this syntax, as follows:

var array1 = new Array();
array1[0] = "zero";
array1[1] = "one";

var struct1 = new Array();
struct1["zero"] = "banana";
struct1["one"] = "orange";

myService.myMethod({x:array1, y:struct1});

You access x and y in your ColdFusion page using ColdFusion array and structure
notation, as follows:

<cfset arrayElement1=Flash.x[1]>
<cfset arrayElement2=Flash.x[2]>
<cfset structElement1=Flash.y.zero>
<cfset structElement2=Flash.y.one>

Collection ActionScript example Notes

Strict array var myArray = new Array();
myArray[0] = "zero";
myArray[1] = "one";
myService.myMethod(myArray);

The Flash Remoting service converts the array
argument to a ColdFusion MX array. All CFML array
operations work as expected.

<cfset p1=Flash.Params[1][1]>
<cfset p2=Flash.Params[1][2]>

Named or
associative array

var myStruct = new Array();
myStruct["zero"] = "banana";
myStruct["one"] = "orange";
myService.myMethod(myStruct);

In ActionScript, named array keys are not
case-sensitive.

<cfset p1=Flash.Params[1].zero>
<cfset p2=Flash.Params[1].one>

Named arguments
using object
initializer

myService.myMethod({x:1, y:2, z:3}); Provides a convenient way of passing named
arguments to ColdFusion pages. Access these
arguments in ColdFusion pages as members of the
Flash scope.

<cfset p1=Flash.x>
<cfset p2=Flash.y>
<cfset p3=Flash.z>
Using Flash Remoting MX with ColdFusion pages 73

You can pass ActionScript objects to ColdFusion pages. The following ActionScript
defines an object:

var myObj = new Object();
myObj.x = "one";
myService.myMethod(myObj);

In ColdFusion, you access the object elements using named parameters in the Flash
scope, as follows:

<cfset p1=Flash.myObj>

Returning results to ActionScript

In ColdFusion pages, only the value of the Flash.Result variable is returned to the
Flash application. While you are limited to returning a single variable to the Flash
application, that variable can contain a single value, an array, a structure, or a record set
returned from a ColdFusion query.

For more information about converting data types between ColdFusion and Flash, see
Chapter 3, “Using Flash Remoting Data in ActionScript” on page 35.

The following procedure creates the service function helloWorld, which returns a
structure that contains simple messages to the Flash application.

To create a ColdFusion page that returns a structure:

1 Create a folder in a directory accessible to ColdFusion and your web server, and name
it helloExamples. This directory can go under your web root directory.

2 Create a ColdFusion page, and save it as helloWorld.cfm in the helloExamples
directory.

3 Edit the helloWorld.cfm page to insert the following code:
<cfset tempStruct = StructNew()>
<cfset tempStruct.timeVar = DateFormat(Now ())>
<cfset tempStruct.helloMessage = "Hello World">

<cfset Flash.Result = tempStruct>

In the example, you add two string variables to a structure, one with a formatted date
and one with a simple message. The structure is returned to the Flash application
using the Flash.Result variable.

4 Save the file.

The directory name is the service address, and the helloWorld.cfm file is a method of the
helloExamples Flash Remoting service. The following ActionScript example calls the
helloWorld ColdFusion page:

#include "NetServices.as"
NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");
gatewayConnection = NetServices.createGatewayConnection();
CFMService = gatewayConnection.getService("helloExamples", this);
CFMService.helloWorld();

Within the result handler of helloWorld, you access the structure returned by
ColdFusion.
74 Chapter 5 Using Flash Remoting MX with ColdFusion MX

Returning record sets to Flash

One common reason for a Flash application to call a ColdFusion page is for the
ColdFusion page to access a database and return a record set to the Flash application. For
example, the following ColdFusion code executes a query and returns the results of the
entire query to the Flash application:

<cfquery name="myQuery" datasource="ExampleApps">
SELECT *
FROM tblItems

</cfquery>

<cfset Flash.Result = myQuery>

You can pass parameters from the Flash application to the ColdFusion page to
conditionalize the query. The previous section contained an example that passed an
argument to the WHERE clause of the query, as the following code shows:

<cfquery name="myQuery" datasource="ExampleApps">
 SELECT ItemName, ItemDescription, ItemCost
 FROM tblItems

WHERE ItemName='#Flash.Params[1]#'
</cfquery>

<cfset Flash.Result = myQuery>

Depending on the SQL code of the query and the amount of data stored in the database,
the query can return a single record, a few records, or a very large number of records. To
pass the entire record set to the Flash application, you only have to write the record set to
the Flash.Result variable.

In ActionScript, you access the record set columns to display the query. For example, you
use the following ActionScript to call a ColdFusion page named cfQuery.cfm that
contains the previous query:

myService.cfQuery("RipperStik");

In the result handler for the cfQuery() function, you access the record set as follows:

function cfQuery_Result (result)
{

DataGlue.bindFormatStrings(employeeData, result,
"#ItemName#,
#ItemDescription#,
#ItemCost#");

}

In this example, employeeData is a Flash list box. This result handler displays the
columns ItemName, ItemDescription, and ItemCost from each record in the result set,
separated by commas, in the list box.
Using Flash Remoting MX with ColdFusion pages 75

Returning record sets in increments

ColdFusion lets you return record set results to Flash in increments. For example, if a
query returns 20 records, you can set the Flash.Pagesize variable to return five records
at a time to Flash. Incremental record sets let you minimize the time that the Flash
application waits for the application server data to load.

The entire record set is called a Pageable Record Set and each increment is called a page.
Therefore, the Flash.Pagesize variable sets the number of records in each page.

The ColdFusion page executes once and returns all the results to the Flash Remoting
gateway. The Flash application then requests subsequent records from the gateway as
required.

To create a ColdFusion page that returns an incremental record set to Flash:

1 Create a ColdFusion page, and save it as getData.cfm in the helloExamples directory.

2 Modify getData.cfm so that the code appears as follows:
<cfset Flash.Pagesize = Flash.Params[1]>
<cfquery name="myQuery" datasource="ExampleApps">

SELECT ItemName, ItemDescription, ItemCost
FROM tblItems

</cfquery>
<cfset Flash.Result = myQuery>

In this example, you pass a parameter from the Flash application that defines the
increment size.

3 Save the file.

When you assign a value to the Flash.Pagesize variable, you specify that if the record
set has more than that number of records, the record set becomes pageable and returns
the number of records specified in the Flash.Pagesize variable. For example:

#include "NetServices.as"
NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");
gatewayConnection = NetServices.createGatewayConnection();
CFMService = gatewayConnection.getService("helloExamples", this);
CFMService.getData(10);

Flash UI components are designed to recognize results returned in increments. After the
initial delivery of records, the RecordSet ActionScript class becomes responsible for
fetching records. You can configure the client-side RecordSet object to fetch records in
various ways using the setDeliveryMode ActionScript function.

In many cases, you do not have to modify the Flash UI components to handle data
returned in increments. For example, if the record set is returned to a Flash list box, the
list box requests more rows as the user scrolls through the list box.
76 Chapter 5 Using Flash Remoting MX with ColdFusion MX

Using Flash Remoting MX with ColdFusion components
ColdFusion components require little modification to work with Flash. The cffunction
tag names the function and contains the application logic, and the cfreturn tag returns
the result to Flash.

Determining the Flash service name
The service name in ActionScript corresponds to the name of the .cfc file that contains
the ColdFusion component. For example, if you create a ColdFusion component in the
file flashComp.cfc, and the file is located in the directory helloExamples under your web
root directory, you would define the service in ActionScript as follows:

#include "NetServices.as"
NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");
gatewayConnection = NetServices.createGatewayConnection();
CFCService = gatewayConnection.getService("helloExamples.flashComp", this);

Within ColdFusion components, you create functions that define the functionality of the
component. After defining the ActionScript service, you call component functions
directly from ActionScript. For example, the following component defines two functions:

<cfcomponent>
<cffunction name="functA" access="remote" returnType="Struct">

...
</cffunction>

<cffunction name="functB" access="remote" returnType="Struct">
...

</cffunction>
</cfcomponent>

Note: For ColdFusion component methods to communicate with Flash applications, you
must set the cffunction tag’s access attribute to remote.

You call these functions in ActionScript using the following syntax:

CFCService.functA();
CFCService.functB();

Returning results to ActionScript
In a ColdFusion component, you use the cfreturn tag to return a single variable to
ActionScript. The following example returns a structure variable:

<cfcomponent>
<cffunction name="helloWorld" access="remote" returnType="Struct" >

...
<cfreturn tempStruct>

</cffunction>
</cfcomponent>
Using Flash Remoting MX with ColdFusion components 77

Returning record sets in increments from a component

ColdFusion lets you return record set results to Flash in increments. For example, if a
query returns 20 records, you can set the Flash.Pagesize variable to return five records
at a time to Flash. Incremental record sets let you minimize the time that the Flash
application waits for the application server data to load.

The component executes once and returns all the results to the Flash Remoting gateway.
The Flash application then requests subsequent records from the gateway as required.

The following example sets the Flash.Pagesize variable to 10 as part of returning
results to the Flash application:

<cfcomponent>
<cffunction name="getQuery" access="remote" returnType="query" >

<cfquery name="myQuery" datasource="ExampleApps">
SELECT *
FROM tblItems

</cfquery>
...
<cfset Flash.Pagesize = 10>
<cfreturn myQuery>

</cffunction>
</cfcomponent>

For more information, see “Returning record sets in increments” on page 76.

Passing parameters to ColdFusion components
You can pass multiple parameters from ActionScript to a ColdFusion component. In a
component, you either include the cfargument tag within a function definition that
corresponds to each parameter, or access the parameters directly from the Arguments
scope.

The order in which you specify the cfargument tags in the function corresponds to the
order in which the parameters are passed from ActionScript. For example, the following
ActionScript call passes three parameters:

CFCService.functA(a, b, c);

The corresponding ColdFusion component defines three arguments, including the data
type of the parameter:

<cfcomponent>
<cffunction ...>

<cfargument name="arg_for_a" type="type_of_a">
<cfargument name="arg_for_b" type="type_of_b">
<cfargument name="arg_for_c" type="type_of_c">
...

</cffunction ...>
</cfcomponent>

For information on how ActionScript data types are converted to ColdFusion data types,
see Chapter 3, “Using Flash Remoting Data in ActionScript” on page 35.
78 Chapter 5 Using Flash Remoting MX with ColdFusion MX

The following table describes using the cfargument tag to access parameters:

The following example replicates the helloWorld function that was previously
implemented as a ColdFusion page. For more information, see “Using Flash Remoting
MX with ColdFusion pages” on page 70.

To create a ColdFusion component that interacts with a Flash application:

1 Create a ColdFusion component, and save it as flashComponent.cfc in the
helloExamples directory.

2 Edit flashComponent.cfc so that it appears as follows:
<cfcomponent>

<cffunction name="helloWorld" access="remote" returnType="Struct">
 <cfset tempStruct = StructNew()>
 <cfset tempStruct.timeVar = DateFormat(Now ())>
 <cfset tempStruct.helloMessage = "Hello World">
 <cfreturn tempStruct>

</cffunction>
</cfcomponent>

Collection ActionScript example Notes

Strict array var myArray = new Array();
myArray[0] = "zero";
myArray[1] = "one";
myService.myMethod(myArray);

The Flash Remoting service converts the array
argument to a ColdFusion MX array. All CFML array
operations work as expected.

<cffunction ...>
<cfargument name="arg1" type="array">
<cfset p1=arg1[1]>
<cfset p2=arg1[2]>
...

</cffunction ...>

Named or
associative array

var myStruct = new Array();
myStruct["zero"] = "banana";
myStruct["one"] = "orange";
myService.myMethod(myStruct);

In ActionScript, named array keys are not
case-sensitive.

<cffunction ...>
<cfargument name="arg1" type="struct">
<cfset p1=arg1.zero>
<cfset p2=arg1.one>
...

</cffunction ...>

Named arguments
using object
initializer

myService.myMethod({x:1, y:2, z:3}); Provides a convenient way of passing named
arguments to ColdFusion pages. Access these
arguments as normal named arguments of a
component function.

<cffunction ...>
<cfargument name="x" type="numeric">
<cfargument name="y" type="numeric">
<cfargument name="z" type="numeric">
<cfset p1=x>
<cfset p2=y>
<cfset p3=z>
...

</cffunction ...>
Using Flash Remoting MX with ColdFusion components 79

This example creates the helloWorld function. The cfreturn tag returns the result to
the Flash application.

3 Save the file.

The following ActionScript example calls this function:

#include "NetServices.as"
NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");
gatewayConnection = NetServices.createGatewayConnection();
CFCService = gatewayConnection.getService("helloExamples.flashComponent", this);
CFCService.helloWorld();

For ColdFusion components, the component filename, including the directory structure
from the web root, serves as the service name. Remember to use a period to delimit the
path directories, rather than a backslash.

Accessing ActionScript objects
ActionScript supports the object initializer syntax when calling a function. For example,
the following function call passes two parameters as objects:

myService.myMethod({x:1, y:2});

In this example, the function passes x with a value of 1 and y with a value of 2.

In your component, you can access objects using the object name, as in the following
example:

<cfcomponent>
<cffunction ...>

<cfargument name="x" type="numeric">
<cfargument name="y" type="numeric">
...

</cffunction ...>
</cfcomponent>

You can also pass arrays, structures, and named objects using this syntax. The following
ActionScript defines an object:

params = new Object();
params.first = "Hello";
params.second = true;
service.concat(params);

In a component, you access the object elements using named parameters, as follows:

<cfcomponent>
<cffunction name="concat" access="remote" returntype="any">

<cfargument name="first" type="any" required="true">
<cfargument name="second" type="any" required="true">
...
<cfreturn first & second>

</cffunction>
</cfcomponent>

This component specifies that two parameters are required. An ActionScript object will
satisfy this requirement, as it will be split into named arguments. However, an
ActionScript array will not.
80 Chapter 5 Using Flash Remoting MX with ColdFusion MX

Passing objects from ActionScript lets you use the Arguments scope within a component
function. The Arguments scope works the same away as the Flash scope in ColdFusion
pages. In a component, you can access parameters using the syntax
Arguments.paramName. Therefore, you can access the params object from the previous
example, as follows:

<cfcomponent>
<cffunction name="concat" access="remote" returntype="any">

<cfset p1=Arguments.first>
<cfset p2=Arguments.second>
...

</cffunction>
</cfcomponent>

Using component metadata with the Flash Remoting service
Flash MX designers can use the Service Browser in the Flash MX authoring environment
to discover business logic functionality built in ColdFusion. You use the description
attribute of the cffunction and cfargument tags to describe the ColdFusion
functionality to the Service Browser.

To create a ColdFusion component that describes itself to the Service Browser:

1 Edit flashComponent.cfc in the helloExamples directory to insert the following code:
<cfcomponent>

<cffunction name="getTime" access="remote" returnType="Date"
description="Returns date">
<cfset tempStruct = StructNew()>
<cfset tempStruct.timeVar = DateFormat(Now ())>
<cfreturn tempStruct>

</cffunction>
<cffunction name="sayHello" access="remote" returnType="Struct"

description="Returns hello message">
<cfset tempStruct = StructNew()>
<cfset tempStruct.helloMessage = "Hello World">
<cfreturn tempStruct>

</cffunction>
</cfcomponent>

In this example, the description attribute of the cffunction tag supplies a short
text description of the component method.

2 Save the file.

3 Open the Flash MX authoring environment, and open the Service Browser using the
Window > Service Browser menu command.

4 If not already present, add the Flash Remoting gateway using your Flash Remoting
service URL, such as http://localhost/flashservices/gateway.

5 Add the flashComponent service using the service address
helloExamples.flashComponent.

6 Click the getTime or sayHello folder, the description appears in the Service Browser.
Using Flash Remoting MX with ColdFusion components 81

Using Flash Remoting MX with server-side ActionScript
The ability to create server-side ActionScript provides a familiar way for Flash developers
to access ColdFusion query and HTTP features without learning CFML. You can place
ActionScript files (.asr) that you want to call from the Flash application on the server,
anywhere under the web server’s root directory. To specify subdirectories of the webroot
or a virtual directory, use package dot notation. For example, in the following assignment
code, the stockquotes.asr file lives in the mydir\stock\ directory:

stockService = gatewayConnnection.getService("mydir.stock.stockquotes", this);

You can also point to virtual mappings, such as cfsuite.asr.stock.stockquotes,
where cfsuite is a virtual mapping and asr.stock is a subdirectory of that mapping.
The CF.query and CF.http functions give you a well-defined interface for building the
SQL queries and HTTP operations of ColdFusion.

For example, the following server-side ActionScript function definition returns a
RecordSet object:

function basicQuery()
{

mydata = CF.query({datasource:"customers",
sql:"SELECT * FROM myTable"});

return mydata;
}

Using CF.http
The CF.http ActionScript function lets you retrieve information from a remote HTTP
server. HTTP Get and Post methods are supported. Using the Get method, you send
information to the remote server directly in the URL. This method is often used for a
one-way transaction in which the CF.http function retrieves an object, such as the
contents of a web page. The Post method can pass variables to a form or CGI program,
and can also create HTTP cookies.

One of the most basic and useful ways of using the CF.http function is using the Get
method argument to retrieve a page from a specified URL. For example, the following
server-side code retrieves file content from the specified URL:

function basicGet(url)
{

// Invoke with just the url. This is an http get.
result = CF.http(url);
return result.get("Filecontent");

}

In the client-side ActionScript, you call the service function and display the results in the
Flash application, as in the following example:

#include "NetServices.as"
if (inited == null)
{

inited = true;
cfserver = NetServices.createGatewayConnection("http://localhost/

flashservices/gateway");
myHttpService = gatewayConnnection.getService("httpFuncs", this);
82 Chapter 5 Using Flash Remoting MX with ColdFusion MX

}
myHttpService.basicGet("http://www.macromedia.com");

function basicGet_Result(result)
{

myDisplayScreen.text = result;
}

The CF.http function returns an object that contains properties (also known as
attributes) that you reference to access the contents of the file returned, header
information, HTTP status codes, and so on. The following table shows the properties
available:

Property Description

Text A Boolean value that indicates whether the specified URL location
contains text data.

Charset The character set used by the document specified in the URL.

HTTP servers normally provide this information, or the charset is
specified in the charset parameter of the Content-Type header field
of the HTTP protocol. For example, the following HTTP header
announces that the character encoding is EUC-JP:

Content-Type: text/html; charset=EUC-JP

Header Raw response header. For example, macromedia.com returns the
following header:

HTTP/1.1 200 OK

Date: Mon, 04 Mar 2002 17:27:44 GMT

Server: Apache/1.3.22 (Unix) mod_perl/1.26

Set-Cookie: MM_cookie=207.22.48.162.4731015262864476;

path=/; expires=Wed, 03-Mar-04 17:27:44 GMT;

domain=.macromedia.com

Connection: close

Content-Type: text/html

Filecontent File contents, for text and MIME files.

Mimetype MIME type. Examples of MIME types include text/html, image/png,
image/gif, video/mpeg, text/css, and audio/basic.

Responseheader Response header. If there is one instance of a header key, you can
access the value as a simple type. If there is more than one instance,
values are put in an array in the responseHeader structure.

Statuscode HTTP error code and associated error string, which returns the following
HTTP status codes:

400: Bad Request

401: Unauthorized

403: Forbidden

404: Not Found

405: Method Not Allowed
Using Flash Remoting MX with server-side ActionScript 83

The arguments in the following table can be passed only as an array of objects in the
params argument of the CF.http function:

You can write the CF.http function using either named arguments or positional
arguments. The positional argument style supports a subset of CF.http arguments,
although the named argument style is more readable than the positional argument style.

The CF.http function accepts the following arguments using the named argument style:

CF.http
({

method:"get or post",
url:"URL",
username:"username",
password:"password",
resolveurl:"yes or no",
params:arrayvar,
path:"path",
file:"filename"

})

The named argument style uses curly braces to surround the function arguments. The
positional argument approach supports a subset of CF.http arguments, but it lets you
code in a more succinct and efficient style. The schema for the positional argument style
is as follows:

CF.http(url);
CF.http(method, url);
CF.http(method, url, username, password);
CF.http(method, url, params, username, password);

When using positional arguments, do not use curly braces.

Argument Description

name Variable name for data that is passed

type Transaction type:

• URL

• FormField

• Cookie

• CGI

• File

value Value of URL, FormField, Cookie, File, or CGI variables that are passed
84 Chapter 5 Using Flash Remoting MX with ColdFusion MX

Using CF.query
The CF.query function lets you perform queries against any ColdFusion data source.
The CF.query function maps closely to the cfquery CFML tag, although it currently
supports a subset of the cfquery attributes.

You use the CF.query function to perform the following actions:
• Identify the data source you want to query
• Pass SQL statements to the data source
• Pass other optional parameters to the database

You can write the CF.query function using either named arguments or positional
arguments. The named argument style is a more readable style than the positional
argument style. Although the positional argument style supports a subset of CF.query
arguments, it allows a more compact coding style that is appropriate for simple
expressions of the CF.query function.

The CF.query function accepts the following arguments using the named argument
style:

CF.query
({

datasource:"data source name",
sql:"SQL stmts",
username:"username",
password:"password",
maxrows:number,
timeout:milliseconds

})

The named argument style uses curly braces to surround the function arguments. The
positional argument approach supports a subset of CF.query arguments, but it lets you
code in a more succinct and efficient style. The schema for the positional argument style
is as follows:

CF.query(datasource, sql);
CF.query(datasource, sql, maxrows);
CF.query(datasource, sql, username, password);
CF.query(datasource, sql, username, password, maxrows);

When using positional arguments, do not use curly braces.

The CF.query function returns a RecordSet object to Flash. For more information about
working with RecordSet objects, see Chapter 3, “Using Flash Remoting Data in
ActionScript” on page 35.
Using Flash Remoting MX with server-side ActionScript 85

Calling web services from Flash Remoting MX
Using Flash Remoting MX with ColdFusion, you can interact with web services directly
from your Flash applications without having to build a ColdFusion page or component.
You write the code to reference a web service in your Flash application and use
ColdFusion only to perform the access.

Web services are remote applications that expose their functions and associated
parameters using the Web Services Description Language (WSDL). WSDL files describe
the functionality of a web service, including available functions, parameters, and results.
You use a Simple Object Access Protocol (SOAP) proxy to parse the WSDL and make
the remote service functions available in your application.

ColdFusion MX contains a built-in SOAP proxy for interacting with web services. The
ColdFusion Flash Remoting service also includes a web service adapter, which employs
the ColdFusion SOAP proxy for calling methods, passing parameters, and returning
results from web services. Using the ColdFusion SOAP proxy, much of the complexity
associated with programming web services is removed.

Invoking web service methods using Flash Remoting MX
The following example shows the code you use to access a web service:

#include "NetServices.as"
if (inited == null)
{

// do this code only once
inited = true;

NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");
gateway_conn = NetServices.createGatewayConnection();
myWebService = gateway_conn.getService("URL_to_WSDL", this);

}

The setDefaultGatewayUrl function specifies the Flash Remoting service URL in
ColdFusion. The getService function creates a reference to the web service. No
connection to ColdFusion is made until you make the service function call.

The following example getService function references a temperature web service,
located at http://www.xmethods.net/sd/2001/TemperatureService.wsdl, which returns
the local temperature by U.S. zip code:

myWebService = gateway_conn.getService("http://www.xmethods.net/sd/2001/
TemperatureService.wsdl", this);

Once you create the connection, you can call methods of the web service.

The temperature web service contains a single method named getTemp. This method
takes a string containing a zip code and returns the temperature as a float. The following
code assumes that inzip represents an input text field:

myWebService.getTemp(inzip.text);
86 Chapter 5 Using Flash Remoting MX with ColdFusion MX

To handle the results of the web service method, you create an event handler with the
same name as the service functions with _Result or _Status appended to the name. The
result handler displays the results in the translate input text box, as the following example
shows:

function getTemp_Result(result)
{

tempDisplay.text = result;
}
function getTemp_Status(result)
{

tempDisplay.text = error.description;
}

In this example, the result of the web service function call, represented by the result
variable, is assigned to the text property of the text box tempDisplay, which displays in
the Flash application.
Calling web services from Flash Remoting MX 87

Securing access to ColdFusion from Flash Remoting MX
You can control access to ColdFusion files from Flash using the ColdFusion security
mechanism in the same way that you control access to any ColdFusion page. This allows
you to grant Flash application access to only selected ColdFusion code.

ColdFusion security is based on a username and password. Flash Remoting applications
can pass the username and password information using the setCredentials function in
ActionScript. From within your ColdFusion Application.cfm page, you can use the
cflogin tag to access this information.

The following example passes a username and password to ColdFusion:

if (inited == null)
{

inited = true;
NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");
gatewayConnection = NetServices.createGatewayConnection();
gatewayConnection.setCredentials("bob","password");
myService = gatewayConnection.getService("securityTest.thecfc", this);

}

Note: Typically, you do not hard-code a username and password within a Flash application
because .swf files can be easily decompiled.

You use the cflogin tag to retrieve the username and password information, as the
following example Application.cfm file shows:

<cfsilent>
<cflogin>

<cfif isDefined("cflogin")
<!--- Verify user name from cflogin.name and password from cflogin.password

using your authentication mechanism. For example, you might store this
information in an LDAP database. --->

>
<cfif cflogin.name eq "bob">

<!--- In this example, bob is in the role of administrator. Typically, you
store user roles with authentication information. --->

<cfloginuser name="#cflogin.name#" password="#cflogin.password#"
roles="Admin">

</cfif>

</cflogin>
</cfsilent>

This example does not show how to perform user verification. For more information on
verification, see Developing ColdFusion MX Applications with CFML.
88 Chapter 5 Using Flash Remoting MX with ColdFusion MX

Assigning security roles to component functions

ColdFusion components offer roles-based security. The following example creates a
component method that deletes files:

<cfcomponent>
<cffunction name="deleteFile" access="remote" roles="admin,manager">

<cfargument name="filepath" required="yes">
<cffile action="DELETE" file=#arguments.filepath#>

</cffunction>
</cfcomponent>

In the example, the cffunction tag includes the roles attribute to specify the user roles
allowed to access it. In this example, only users in the admin and manager role can access
the function. Multiple roles are delimited with a comma.

In the Application.cfm file, you use the cfloginuser tag to log in the user and assign the
user to a role. The user must be assigned to the correct role to access the component
function. For more information on roles, see Developing ColdFusion MX Applications with
CFML.
Securing access to ColdFusion from Flash Remoting MX 89

Handling errors with ColdFusion
ColdFusion pages and components can return error information to a Flash application if
the ColdFusion code fails. For example, the following Flash application calls a
ColdFusion page named causeError.cfm:

#include "NetServices.as"
NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");
gatewayConnection = NetServices.createGatewayConnection();
CFMService = gatewayConnection.getService("errorExample", this);
CFMService.causeError();

To help with debugging your ColdFusion code, use the cftry and cfcatch tags in your
ColdFusion page or component to catch errors and return helpful error messages about
the errors to the Flash application. For example, the ColdFusion page causeError.cfm
contains the following code:

<cftry>
<cfset dev = Val(0)>
<cfset Flash.Result = (1 / dev)>

<cfcatch type="any">
<cfthrow message="An error occurred in this service: #cfcatch.message#">

</cfcatch>
</cftry>

In this example, the second cfset tag fails because it causes a divide-by-zero error. The
message attribute of the cfthrow tag describes the error and is returned to the Flash
application by ColdFusion. For more information on using the cftry and cfcatch tags,
see Developing ColdFusion MX Applications with CFML.

To handle the error in your Flash application, you create a Status handler for the
causeError method, as follows:

function causeError_Status (error)
{

resultBox.text = error.description;
}

In this example, resultBox is a Flash text box that displays the error message created by
the cfthrow tag.

For more information on handling errors, see Chapter 2, “Using Flash Remoting
Components in ActionScript” on page 13.
90 Chapter 5 Using Flash Remoting MX with ColdFusion MX

CHAPTER 6

Using Flash Remoting MX for Java
This chapter describes how to use Macromedia Flash Remoting MX with services
running in Java application servers.

You can use Flash Remoting MX from ActionScript in a Flash application to call public
methods on Java objects running in Java application servers. Flash Remoting MX
supports the following types of Java objects:
• JavaBeans (stateful)
• Java classes (stateless)
• Enterprise JavaBeans (stateless session, stateful session, and entity beans)
• Java servlets and JSPs
• Java Management Extensions (JMX) MBeans; available in Macromedia JRun 4 only

Macromedia JRun 4 also lets you call functions on server-side ActionScript, which can in
turn call methods on server-side Java objects.

Contents

• About Flash Remoting MX for Java ... 92

• Calling Java classes or JavaBeans from ActionScript ... 94

• Calling EJBs from Flash... 100

• Calling servlets and JSPs from Flash... 104

• Calling JMX MBeans from Flash (JRun only) ... 107

• Calling server-side ActionScript from Flash (JRun only)...................................... 109

• Handling function results in ActionScript ... 111

• Using Flash Remoting MX with JRun security .. 113

• Passing XML objects between Flash and Java ... 114

• Viewing Flash Remoting MX log entries.. 115
91

About Flash Remoting MX for Java

How does Flash Remoting MX for Java work?
Flash Remoting MX exposes Java objects as services that are accessible from Flash
applications as ActionScript functions that correspond to Java object methods. A Flash
developer writes ActionScript that uses the NetServices ActionScript class to connect to a
remote Java application server, get a reference to a service, and invoke the service’s

functions.

To transport messages, Flash Remoting MX uses a binary message format called Action
Message Format (AMF) delivered over HTTP and modeled on the Simple Object Access
Protocol (SOAP) used in web services implementations. AMF is smaller and faster than
standard SOAP, and is purely asynchronous and event-driven. It lets you send a variety of
data types, including RecordSets, Java objects, primitives such as integers, Strings, XML
documents, references to EJBObjects, and Dates across the wire. For more information
about AMF, see “Understanding AMF,” in Chapter 1.

The Flash Remoting gateway is a front controller on the Java application server that
handles the conversion of data types between ActionScript and Java.

When the gateway receives a service request, the request passes through a set of filters that
handle such things as serialization, logging, and security, before arriving at a service
adapter designed to handle the service and invocation type. Flash Remoting MX has
adapters specifically designed for JavaBeans, Java classes, EJBs, JMX MBeans, and
server-side ActionScript.

Where does Flash Remoting MX fit into the Java application architecture?
A design pattern is a solution to a recurring problem. Many design patterns are used in
the context of a model-view-controller architecture, in which you separate data access
functionality from the user interface and control logic that uses that functionality.

In design pattern terminology, a Flash application that uses Flash Remoting MX is the
view portion of an application, much like a JavaServer Pages (JSP)- or servlet-based
front-end is. The Flash Player, running in a web browser or in stand-alone mode, is the
client in which the view is rendered. The Flash Remoting gateway is a front controller
that translates interactions with the Flash-based view into actions that server-side Java
objects perform.

Using Flash Remoting MX, you can take advantage of common design patterns and
frameworks in which relational data is mapped to objects such as EJBs, JavaBeans, value
objects, JMX MBeans, or Java Collections returned to the presentation tier. Flash
Remoting MX for Java relies on these patterns of data transfer, rather than working with
relational data returned directly to Flash.

In addition to using built-in data type mapping, you can pass any serializable object from
Java to a Flash client. The Java instance's fields, including private fields, are converted to
ActionScript properties on an ActionScript result object; when working with JavaBeans,
this feature gives you access to JavaBean properties.
92 Chapter 6 Using Flash Remoting MX for Java

Two design patterns, the value object and session facade patterns, can be particularly
useful with Flash Remoting MX. Both patterns can reduce the number of remote method
calls required in a Flash application.

You can use a value object to send a coarse-grained view of data to the server and get back
fine-grained data. For example, you can call a single method on a value object that
aggregates several method calls on an entity bean. The method result is returned to the
Flash application as an ActionScript result object from which you can access data locally.
This pattern can help reduce network traffic and response time, and reduce the load on
EJBs. For more information about the value object pattern, go to http://java.sun.com/
blueprints/patterns/j2ee_patterns/value_object/index.html.

You can use a session facade to provide a single point of contact to a set of EJBs. For
example, you can call methods on a session bean (the session facade) that is capable of
calling various methods on several other EJBs, depending on the user’s current context in
the application. This pattern reduces network traffic and makes it easier to support
different types of clients, change the enterprise data model, or change the server
implementation. For more information about the session facade pattern, go to http://
java.sun.com/blueprints/patterns/j2ee_patterns/session_facade/index.html.
About Flash Remoting MX for Java 93

Calling Java classes or JavaBeans from ActionScript
This section describes how to call a JavaBean or Java class from Flash using Flash
Remoting MX. There is only one significant difference in how Flash Remoting MX
handles standard Java classes and JavaBeans. A Java class is stateless and a new object
instance is created whenever a method is invoked. A JavaBean is stateful in the user’s
HTTP session. Using a JavaBean with Flash Remoting MX is similar to using the
jsp:useBean tag in a JSP. Flash Remoting MX sends a JSESSIONID parameter to the
Flash application, and NetServices appends the session ID value to all subsequent HTTP
requests.

Note: The Flash Remoting session is independent of HTTPSession objects available to
JSPs and servlets. A stateful JavaBean instantiated through Flash Remoting MX cannot
access an object stored in a session by a JSP or servlet. Conversely, a JSP or servlet cannot
use its session to access a JavaBean instantiated through Flash Remoting MX.

Making a Java class or JavaBean available to Flash Remoting MX
To call a standard Java class or JavaBean with Flash Remoting MX, the class or bean must
be available in the classpath of the Flash Remoting gateway. Unless the class or bean is in
the same web application as the gateway, you typically add it to the system classpath.

The following table lists standard ways to add classes to the system classpath:

Application server Classpath information

Sun™ ONE
Web Server

In the Web Server Administration Server console, add classes to the
Classpath field in the Configure JVM Attributes page of the Java
panel.

IBM® WebSphere® In the WebSphere Application Server Console, add classes to the
Classpath field of the JVM Settings page for your server. In the
server-cfg.xml tree in the left pane of the console, JVM Settings is
under WebSphere Administrative Domain > Nodes > nodename >
Application Servers > servername > Process Definition.

Note: To call a class or JavaBean in WebSphere, you also must
grant clients permission to access the package that contains the
class or JavaBean. To do this, you add a line to the default
permissions granted to all domains in the websphere_root/
AppServer/java/jre/lib/security/java.policy file. For example, the
following line lets users access the Flash Remoting sample classes in
the flashgateway.samples package:

permission java.lang.RuntimePermission
"accessClassInPackage.flashgateway.samples";

JRun Copy classes to the jrun_root/jrun_server/SERVER-INF/classes
directory in subdirectories that match the package structure of the
classes. Copy JAR files to the jrun_root/jrun_server/SERVER-INF/lib
directory.
94 Chapter 6 Using Flash Remoting MX for Java

Getting a reference to a Java class or JavaBean in ActionScript
Before calling methods of a Java class or JavaBean from ActionScript, you must get a
reference to the Java object.

To get a reference to a Java object:

1 Include the NetServices.as file:
#include "NetServices.as"

2 Specify the default Flash Remoting gateway URL:
NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");

Note: There are several other ways to specify the gateway URL. For more information,
see “Configuring Flash Remoting MX,” in Chapter 2.

3 Connect to the Flash Remoting gateway:
gatewayConnection = NetServices.createGatewayConnection();

4 Get a reference to the Java class or JavaBean in the HTTP session, as shown in the
following example:
flashtestService = gatewayConnection.getService
("flashgateway.samples.FlashJavaBean", this);

The first parameter of the getService function is the fully qualified class name of
the Java class or JavaBean. The second parameter of the getService function, this,
specifies that the results of service function calls are returned to this Flash timeline.

Invoking Java methods in ActionScript
Once you have a reference to a Java class or JavaBean, you can use ActionScript functions
to invoke that object’s public methods. For example, to invoke the following JavaBean
method:

public String getMessage() {
 count++;
 return message + " (count=" + count + ")";
 }

You could use the following ActionScript code, assuming flashtestService represents
your reference to the JavaBean:

function getMessage()
{

flashtestService.getMessage();
}

To handle the function results, you use a result handler function like the following:

function getMessage_Result(result)
{

messageOutput.text = result;
}

For more information about handling function results in ActionScript, see “Handling
function results in ActionScript” on page 111.
Calling Java classes or JavaBeans from ActionScript 95

Looking at a Flash application that calls a JavaBean
The following sections show the three pieces required to call a JavaBean from a Flash
application that uses Flash Remoting MX:
• JavaBean
• Flash user interface
• ActionScript

Looking at the JavaBean

The example Flash application invokes the setMessage, getMessage, testBoolean, and
testDate methods of the following JavaBean:

package com.samples;

import java.util.Date;
import java.io.Serializable;
import org.w3c.dom.Document;

public class FlashJavaBean
 implements Serializable {

 private String message;
 private int count;

 public FlashJavaBean() {
 message = "Hello World From JavaBean";
 count = 0;
 }
 public boolean testBoolean(boolean b) {

return b;
 }
 public Date testDate(Date d) {

return d;
 }
 public void setMessage(String message) {
 this.message = "Hi " + message;
 }
 public String getMessage() {
 count++;
 return message + " (count=" + count + ")";
 }
 public int getCount() {
 count++;
 return count;
 }
 public void setCount(int count) {
 this.count = count;
 }
 public Document testDocument(Document doc) {

return doc;
 }
}

96 Chapter 6 Using Flash Remoting MX for Java

Looking at the user interface

The following figure shows the user interface of the example Flash application with
callouts that indicate the field types and variable names referenced in the ActionScript
code:

Looking at the ActionScript

The following code shows the ActionScript of the example Flash application, with
comments in bold:

// Include NetServices library.
#include "NetServices.as"
#include "NetDebug.as"
if (inited == null)
{

// do this code only once
inited = true;

// Set the default gateway URL.
 NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");

// Connect to the gateway.
 gatewayConnection = NetServices.createGatewayConnection();
// Get reference to JavaBean:
 flashtestService = gatewayConnection.getService
 ("flashgateway.samples.FlashJavaBean", this);

flashDate = new Date();

// Set initial text for messageInput and dateInput text fields.
messageInput.text = "[Enter a Message]";
dateInput.text = "" + flashDate;

}

// Invoke business methods when user clicks the runButton.
function runExample()
{

setMessage();
getMessage();
testBoolean();

Input Text Field: messageInput

Dynamic Text Field: messageOutput

RadioButton: trueRadio

Dynamic Text Field: boolOutput

PushButton: runButton
with Click Handler: runExample

Dynamic Text Field: dateInput

Dynamic Text Field: dateOutput
Calling Java classes or JavaBeans from ActionScript 97

testDate();
}

// Business functions.
function setMessage()
{

flashtestService.setMessage(messageInput.text);
}

function getMessage()
{

flashtestService.getMessage();
}

function testBoolean()
{

if (trueRadio.GetState())
{

flashtestService.testBoolean(true);
}
else
{

flashtestService.testBoolean(false);
}

}

function testDate()
{

flashDate = new Date();
dateInput.text = "" + flashDate;
flashtestService.testDate(flashDate);

}

// Handle results from server; display results in output fields.
function setMessage_Result(result)
{
}

function getMessage_Result(result)
{

messageOutput.text = result;
}

function setMessage_Status(result)
{

messageOutput.text = result.details;
}

function getMessage_Status(result)
{

messageOutput.text = result.details;
}

function testBoolean_Result(result)
{

boolOutput.text = "result: " + result;
98 Chapter 6 Using Flash Remoting MX for Java

}

function testBoolean_Status(result)
{

boolOutput.text = "status: " + result.details;
}

function testDate_Result(result)
{

flashDate = result;
dateOutput.text = " " + flashDate;

}

function testDate_Status(result)
{

dateOutput.text = "Status: " + result.details;
}

Calling Java classes or JavaBeans from ActionScript 99

Calling EJBs from Flash
The following sections describe how to get a reference to an EJBHome object and call
EJB methods from ActionScript.

Getting a reference to an EJBHome object in ActionScript
Before calling the methods of an EJB from ActionScript, you must get a reference to an
EJBHome object.

To get a reference to an EJBHome object:

1 Include the NetServices.as file:
#include "NetServices.as"

2 Specify the default Flash Remoting gateway URL:
NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");

Note: There are several other ways to specify the gateway URL. For more information,
see “Configuring Flash Remoting MX,” in Chapter 2.

3 Connect to the Flash Remoting gateway:
gatewayConnection = NetServices.createGatewayConnection();

4 Get a reference to the EJBHome object; you must provide the JNDI name of the
EJBHome object as the first parameter of the getService function, as shown in the
following example where SampleLoan is the JNDI name:
SampleLoanHome = gatewayConnection.getService("SampleLoan", this);

The first parameter of the getService function is the JNDI name of the EJBHome
object; the JNDI name cannot contain a period (.) character. The second parameter
of the getService function, this, specifies that the results of service function calls
are returned to this Flash timeline.

Invoking EJB methods in ActionScript
Unlike JavaBeans and Java classes, you must invoke the create method of an EJBHome
object and return an EJBObject object before calling EJBObject methods. After you call
the create method of an EJBHome object, you can use the ActionScript
create_Result(result) function to get a reference to the EJBObject object and invoke its
methods.

For example, to invoke the following method of a stateless session bean that performs
loan calculations based on loan principal, term, and interest rate:

public double calculate(double principal, int months, float rate){
 if (rate < 0 || rate>1) return 0.0;
 double monthlyPayment = principal * (rate / (1 - Math.pow(1 +

rate,-months)));
 return monthlyPayment;
 }
100 Chapter 6 Using Flash Remoting MX for Java

You could use the following ActionScript code:

function runExample()
{

SampleLoanHome = gatewayConnection.getService("SampleLoanEjbHome", this);
SampleLoanHome.create();

}
function create_Result(result)
{

flashStatelessEJB = result;
calculate();

}
function calculate()
{

flashStatelessEJB.calculate((number (principalInput.text)), (number
(monthsInput.text)), (number (rateInput.text)));

}

To handle the function results, you use a result handler function like the following:

function calculate_Result (result)
{

payOutput.text = result;
}

For more information about handling function results in ActionScript, see “Handling
function results in ActionScript” on page 111.

Looking at a Flash application that calls an EJB
The following sections illustrate the three pieces required to call an EJB from Flash
Remoting MX:
• EJB
• Flash user interface
• ActionScript

Looking at the EJB

The example Flash application calculates loan payments by invoking the calculate
method on the following stateless session bean:

package ejbeans;

import java.rmi.*;
import java.util.*;
import javax.ejb.*;

public class SampleLoanBean implements SessionBean
{
//
 ///// General Enterprise EJBean stuff
 //
private SessionContext sessionContext;
 public void ejbCreate() throws CreateException{};
 public void ejbRemove() throws RemoteException{};
 public void ejbActivate() throws RemoteException{};
Calling EJBs from Flash 101

 public void ejbPassivate() throws RemoteException{};
 public void setSessionContext(SessionContext context) throws RemoteException {
 sessionContext = context;
 }
public double calculate(double principal, int months, float rate){
 if (rate < 0 || rate>1) return 0.0;
 double monthlyPayment = principal * (rate / (1 - Math.pow(1 +

rate,-months)));
 // Double payMe=new Double (monthlyPayment);
 return monthlyPayment;
 }
}

Looking at the user interface

The following figure shows the user interface of the example Flash application with
callouts that indicate the field types and variable names referenced in the ActionScript
code:

Looking at the ActionScript

The following code is the ActionScript of the example Flash application:

// Include NetServices library.
#include "NetServices.as"
#include "NetDebug.as"
// --
// Start up the application
// --

if (inited == null)
{

// do this code only once
inited = true;

// Set the default gateway URL.
 NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");

Input Text Field: principalInput

Input Text Field: monthsInput

Input Text Field: rateInput

Dynamic Text Field: payOutput

PushButton: runButton
with Click Handler: runExample
102 Chapter 6 Using Flash Remoting MX for Java

// Connect to the gateway.
 gatewayConnection = NetServices.createGatewayConnection();
}

// --
// Handlers for user interaction events
// --
// Get reference to EJBHome and create EJBObject when user
// clicks the runButton.
function runExample()
{
flashstatelessHome = gatewayConnection.getService
("SampleLoanEjbHome", this);
flashstatelessHome.create();
}

// ---
// Business Methods
// ---
// Calculate payment based on data user enters in principalInput,
// monthsInput, and rateInput text fields. Function arguments must
// be numbers. Java method expects double, int, and float.
function calculate()
{
flashStatelessEJB.calculate((number (principalInput.text)),
 (number (monthsInput.text)), (number (rateInput.text)));
}

// --
// Handlers for data coming in from server
// --
// Get reference to EJBObject and invoke calculatePayment function.
function create_Result(result)
{

flashStatelessEJB = result;

 calculate();
}

// Get reference to calculate result object and display result
// in PayOutput text field.
function calculate_Result (result)
{

payOutput.text = result;
}

Calling EJBs from Flash 103

Calling servlets and JSPs from Flash
The following sections describe how to get a reference to a servlet or a JSP defined as a
servlet in a web.xml file, and call the servlet or JSP.

Note: Servlets are supported on Servlet 2.2- and Servlet 2.3-compliant application
servers. JSPs are only supported on Servlet 2.3-compliant application servers.

Coding a servlet to use with Flash Remoting MX
Although you can use any servlet with Flash Remoting MX, Flash Remoting MX
provides a FlashServlet that subclasses the Servlet API and provides a better API than the
Request scope. To use the FlashServlet, your servlet must be in the Flash Remoting web
application. It must subclass the flashgateway.adapter.java.FlashServlet class and
implement the following abstract method:

public Object service(ServletRequest req, ServletResponse resp, List arguments);

Getting a reference to a web application in ActionScript
Before calling a servlet or a JSP defined as a servlet, you must get a reference to the
context root of the web application that contains the servlet or JSP.

To get a reference to a web application that contains a servlet or JSP:

1 Include the NetServices.as file:
#include "NetServices.as"

2 Specify the default Flash Remoting gateway URL:
NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");

Note: There are several other ways to specify the gateway URL. For more information,
see “Configuring Flash Remoting MX,” in Chapter 2.

3 Connect to the Flash Remoting gateway:
gatewayConnection = NetServices.createGatewayConnection();

4 Get a reference to the context root of the web application that contains the servlet or
JSP, as shown in the following example:
servletService = gatewayConnection.getService("mycontextroot", this);

The first parameter of the getService function must be the context root of the web
application that contains the servlet or JSP. The second parameter of the getService
function, this, specifies that the results of service function calls are returned to this
Flash timeline.
104 Chapter 6 Using Flash Remoting MX for Java

Calling a servlet or JSP
To call a servlet or a JSP defined as a servlet from ActionScript, use the servlet name
specified in the web application’s web.xml deployment descriptor file as an ActionScript
function name. For example, the servlet name is MyServlet in the following example:

function go_Clicked()
{

servletService.MyServlet();
}

The web.xml file contains the following servlet definition:

<servlet>
 <servlet-name>MyServlet</servlet-name>
 <display-name>MyServlet</display-name>
 <description>Simple text servlet</description>
 <servlet-class>MyServlet</servlet-class>
</servlet>

Note: On Servlet 2.3-compliant application servers, you can define a JSP as a servlet by
specifying a JSP file name in a jsp-file element, rather than a servlet class in a servlet-class
element.

Request arguments sent from Flash as parameters of the ServletName(); function are
available from the Request scope as the parameter "FLASH.PARAMS". You can return
results to Flash using the request parameter "FLASH.RESULT", as shown in the
following servlet:

import javax.servlet.*;
import java.io.IOException;
import java.util.List;

public class MyServlet implements Servlet
{

private String message = null;

public void init(ServletConfig config) throws ServletException
{

message = "Hello from MyServlet";
}
public void service(ServletRequest request, ServletResponse response)

throws ServletException, IOException
{

//The args could be used here too...
/*
Object o = request.getAttribute("FLASH.PARAMS");
if (o instanceof List)
{

List args = (List)o;
}
Object arg0 = args.get(0);
Object arg1 = args.get(1);
*/
request.setAttribute("FLASH.RESULT", message);

}
public String getServletInfo()
{

Calling servlets and JSPs from Flash 105

return "A test servlet.";
}
public ServletConfig getServletConfig()
{

return null;
}
public void destroy()
{

message = null;
}

}

To handle the function results in ActionScript, you use a result handler function like this
one:

function MyServlet_Result (result)
{

ResultBox.text = result;
}

For more information about handling function results in ActionScript, see “Handling
function results in ActionScript” on page 111.
106 Chapter 6 Using Flash Remoting MX for Java

Calling JMX MBeans from Flash (JRun only)
You can call Macromedia JRun application functionality through JMX using Flash
Remoting MX. You connect to a JMX MBean object using the MBean object name in
the ActionScript getService function. Service functions are methods defined in the
MBean's manageable interface. The following sections describe how to get a reference to
a JMX MBean object and call its methods.

To grant clients access to JMX MBeans, you must provide permissions that specify the
exposed MBean object names in the jrun_root/lib/jrun.policy file. For example, the
following line of text, which is currently uncommented in the jrun.policy file, exposes
the DeployerService for the JRun Flash samples:

permission jrun.security.JMXPermission
"accessMBean.DefaultDomain:service=DeployerService";

You can also use wildcards to grant access to JMX MBeans. For example, to grant access
to all MBeans under the DefaultDomain using a wildcard, you would uncomment the
following line in the jrun.policy file:

// permission jrun.security.JMXPermission "accessMBean.DefaultDomain:*";

Getting a reference to an MBean in ActionScript
Before calling the methods of an MBean from ActionScript, you must get a reference to
to an MBean.

To get a reference to an MBean:

1 Include the NetServices.as file:
#include "NetServices.as"

2 Specify the default Flash Remoting gateway URL:
NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");

Note: There are several other ways to specify the gateway URL. For more information,
see, “Using Flash Remoting Components in ActionScript,” on page 13.

3 Connect to the Flash Remoting gateway:
gatewayConnection = NetServices.createGatewayConnection();

4 Get a reference to the MBean object; you must provide the name of the JMX object
under which the MBean is registered in the getService function, as shown in the
following example:
jrunDeployerMBean = gatewayConnection.getService ("DefaultDomain:service =

DeployerService", this);
Calling JMX MBeans from Flash (JRun only) 107

Invoking MBean methods in ActionScript
Once you have a reference to an MBean, you can use ActionScript functions to invoke its
public methods. For example, you could use the following ActionScript code to invoke
the getEARs method of the jrunDeployerMBean MBean to get a list of JMX object
names for deployed enterprise applications:

function getEARs()
{

jrunDeployerMBean.getEARs();
}

To handle the function results, you use a result handler function like the following:

function getEARs_Result(result)
{

numDeployed.text = result.length;
}

For more information about handling results in ActionScript, see “Handling function
results in ActionScript” on page 111.
108 Chapter 6 Using Flash Remoting MX for Java

Calling server-side ActionScript from Flash (JRun only)
This section describes how to call a server-side ActionScript file from Flash using Flash
Remoting MX. The ability to create server-side ActionScript provides a familiar way for
Flash developers to create server-side code without learning Java. You can also call
server-side Java objects from server-side ActionScript. JRun uses the Mozilla Rhino
JavaScript engine to support server-side ActionScript; for more information about calling
Java objects with Rhino, go to http://www.mozilla.org/rhino/scriptjava.html.

Getting a reference to a server-side ActionScript file
Before calling the functions of a server-side ActionScript file (*.asr), you must get a
reference to the file. Place the server-side ActionScript file that you want to call in a web
application.

To get a reference to a server-side ActionScript file:

1 Include the NetServices.as file:
#include "NetServices.as"

2 Specify the default Flash Remoting gateway URL:
NetServices.setDefaultGatewayUrl("http://localhost/flashservices/gateway");

Note: There are several other ways to specify the gateway URL. For more information,
see Chapter 2, “Using Flash Remoting Components in ActionScript” on page 13.

3 Connect to the Flash Remoting gateway:
gatewayConnection = NetServices.createGatewayConnection();

4 Get a reference to the server-side ActionScript file, as shown in the following
example:
flashsasService = gatewayConnection.getService (flash.script.FlashSample",

this);

The first parameter of the getService function is the directory structure and name
of the ASR file relative to a web application context root. In this example, flash is the
context root of the web application, script is a directory under the context root, and
FlashSample is the prefix of the ASR file name. The second parameter of the
getService function, this, specifies that the result of service function calls are
returned to this Flash timeline.

Invoking server-side ActionScript functions
Once you have a reference to a server-side ActionScript file, you can use client-side
ActionScript functions to call its functions. For example, to call the following server-side
ActionScript function:

function getBiggerString(value)
{
 return "Hello from SSAS " + value;
}

Calling server-side ActionScript from Flash (JRun only) 109

You could use the following client-side ActionScript code, assuming flashssasService
represents your reference to the server-side ActionScript file:

function getBiggerString()
{

flashssasService.getBiggerString(stringInput.text);
//wait for the results
stringOutput.text = "[Invoking SSAS...]";

}

To handle the function results, you use a result handler function like the following:

function getBiggerString_Result(result)
{

stringOutput.text = result;
}

For more information about handling function results in ActionScript, see “Handling
function results in ActionScript” on page 111.
110 Chapter 6 Using Flash Remoting MX for Java

Handling function results in ActionScript
Handling function results in ActionScript is the same for Java application servers and the
other platforms that Flash Remoting MX supports. You write an ActionScript result
handler function with a name composed of the name of the function returning the result
with _Result appended to it. For example, to pass the return value of the following
ActionScript function to ActionScript:

function calculate()
{

loanService.calculate((number (principalInput.text)), (number
(monthsInput.text)), (number (rateInput.text)));

}

You would use the following ActionScript function:

function calculate_Result(result)
{

payOutput.text = result;
}

If a method returns an object that implements the Java Serializable interface, and all of its
fields are serializable, its public and private properties are available as ActionScript
properties. For example, the following method in a Java class called Loan calculates loan
payments and returns an instance of a JavaBean called LoanInfo that stores principal,
months, rate, and monthlyPayment property values:

public LoanInfo calculateReturnComplex(double principal, int months, float rate){
 if (rate < 0 || rate>1)
 principal = 0.0;
 double monthlyPayment = principal * (rate / (1 - Math.pow(1 + rate,-months)));
 LoanInfo info=new LoanInfo(principal, months, rate, monthlyPayment);
 return info;
 }

You could use the following function to call this method in ActionScript:

function calculate()
{

loanService.calculateReturnComplex((number (principalInput.text)), (number
(monthsInput.text)), (number (rateInput.text)));

}

The calculate function returns the following LoanInfo bean:

package samples;
public class LoanInfo {

private double principal;
private int months;
private float rate;
private double monthlyPayment;
public LoanInfo() {
}
public LoanInfo(double principal, int months, float rate, double monthlyPayment)

{
this.principal=principal;
this.months=months;
Handling function results in ActionScript 111

this.rate=rate;
this.monthlyPayment=monthlyPayment;

}
 public LoanInfo(double principal, int months, float rate, double

monthlyPayment, String message) {
this.principal=principal;
this.months=months;
this.rate=rate;
this.monthlyPayment=monthlyPayment;

 this.message=message;
}
public void setPrincipal(double principal) {

this.principal=principal;
}
public double getPrincipal() {

return principal;
}
public void setMonths(int months) {

this.months=months;
}
public int getMonths() {

return months;
}
public void setRate(float rate) {

this.rate=rate;
}
public float getRate() {

return rate;
}
public void setMonthlyPayment(double monthlyPayment) {

this.monthlyPayment=monthlyPayment;
}
public double getMonthlyPayment() {

return monthlyPayment;
}

}

You can use the following ActionScript code to get the value of the LoanInfo bean’s
MonthlyPayment property:

function calculate_Result (result)
{

payOutput.text = result.monthlyPayment;
}

For detailed information about the ActionScript result-handling hierarchy and
result-handling strategies, see “Handling service results,” in Chapter 2.
112 Chapter 6 Using Flash Remoting MX for Java

Using Flash Remoting MX with JRun security
You can use the NetServices setCredentials function in ActionScript to authenticate
Flash users to a JRun 4 server and authorize them to access EJBs once they have been
authenticated. When a user cannot be authenticated, the NetServices onStatus function
provides details on the client.

All of the gateway adapters support authentication, but only the EJB adapter supports
authorization. Once a user has been authenticated, the user’s role is associated with any
EJBs the user may access, and the security permissions established in EJB deployment
descriptors (ejb-jar.xml) are enforced. Only users in specified roles are allowed to access
the EJB methods. An error occurs when the credentials provided through the
setCredentials function do not map to a user in a specified role.

The following sections show examples of ActionScript for setting credentials and security
settings.

Looking at the ActionScript
The following example shows ActionScript code that passes a username and password
from a Flash application to a JRun server:

gatewayConnection = NetServices.createGatewayConnection();
gatewayConnection.setCredentials("Flash", "Flashpass");

Looking at the JRun security settings
The following example shows entries for the user named Flash and a role, FlashRole, to
which the user belongs, using the default security implementation (jrun-users.xml file)
for a JRun server:

<user>
<user-name>Flash</user-name>
<password>Flashpass</password>

</user>
<role>

<role-name>FlashRole</role-name>
<user-name>Flash</user-name>

</role>

The following example shows entries for the FlashRole role and corresponding EJB
method permissions in an ejb-jar.xml file:

<assembly-descriptor>
 <security-role>
 <role-name>FlashRole</role-name>
 </security-role>
 <method-permission>
 <role-name>FlashRole</role-name>
 <method>
 <ejb-name>SampleLoanBean</ejb-name>
 <method-name>calculate</method-name>
 </method>
 </method-permission>
</assembly-descriptor>
Using Flash Remoting MX with JRun security 113

Passing XML objects between Flash and Java
Both ActionScript and Java have object types for storing XML documents, and you can
use Flash Remoting MX to send XML documents back and forth between ActionScript
and Java.

In Flash, you can use an ActionScript XML object to represent and manipulate XML an
document tree. In Java, you can use an org.w3c.dom.Document object to represent and
manipulate an XML document tree. Flash Remoting MX converts ActionScript XML
objects to org.w3c.dom.Document objects and org.w3c.dom.Document objects to
ActionScript XML objects. For more information about ActionScript XML objects, see
the Flash MX documentation set. For more information about the Java
org.w3c.dom.Document interface, see the Java 2 Platform Standard Edition API
documentation available at http://java.sun.com.

The following sections describe how you pass XML between ActionScript and Java.

Note: If you make a reference to an XML Document Type Definition (DTD) or schema in
your XML document, you must use a Uniform Resource Identifier (URI) that the server can
reach. Do not use a relative path.

Sending an ActionScript XML object to Java
The following ActionScript function creates an XML object and sends it as a parameter
to a service function, which in this case is a JavaBean method that expects an
org.w3c.dom.Document object; the first element of the XML document contains text
entered in a Flash text field called input:

function testDocument()
{

xmlDocument = new XML();

firstElement = xmlDocument.createElement("TEST");
firstElement.attributes.message = input.text;
secondElement = xmlDocument.createElement("INSIDETEST");
firstElement.appendChild(secondElement);

xmlDocument.appendChild(firstElement);

flashtestService.testDocument(xmlDocument);
}

Note: You can also create an XML document object in ActionScript by passing a string
representation of the XML to the new XML(source); constructor. For more information,
see the Flash MX documentation set.

Returning an XML object from Java to Flash
The JavaBean method discussed in the previous section returns an
org.w3c.dom.Document object as follows:

public Document testDocument(Document doc)
{
return doc;
}

114 Chapter 6 Using Flash Remoting MX for Java

Flash Remoting MX converts the returned org.w3c.doc.Document object to an
ActionScript result of type XML object, which can be used in a result handler function as
follows:

function testDocument_Result(result)
{

output.text = result.firstChild.attributes["message"];
}

When the function above is called, the text contained in the first child element of the
XML document root is displayed in a Flash dynamic text field called output. The text
matches whatever text the user initially entered in the Flash text field called input.

Viewing Flash Remoting MX log entries
Flash Remoting MX writes messages to standard out and standard error, which appear in
the following log files:

Flash Remoting MX uses a default logger on all Java application servers other than JRun.
You can set the default logger’s logging level using the LOG_LEVEL context-param in
the web.xml file of the Flash Remoting web application. Valid values are None, Error,
Warning, Information, and Debug. By default, only errors are logged. The values are not
case sensitive.

Application server Log location

Sun One Web Server error file in the sunone_root/Servers/https-server_name/logs
directory

WebSphere servername_stdout and servername_stderr files in the
websphere_root/AppServer/logs directory

JRun servername_event files in jrun_root/logs directory
Viewing Flash Remoting MX log entries 115

116 Chapter 6 Using Flash Remoting MX for Java

CHAPTER 7

Using Flash Remoting MX for

Microsoft .NET
Macromedia Flash Remoting MX for Microsoft .NET is an ASP.NET web application
that lets Macromedia Flash applications access and invoke ASP.NET pages, ADO.NET
data, web services, and assemblies from ActionScript.

Contents

• About using Flash Remoting MX for Microsoft .NET... 118

• Calling ASP.NET pages from Flash.. 122

• Using ADO.NET objects with Flash Remoting MX.. 128

• Calling web services from Flash ... 131

• Calling ASP.NET assemblies from Flash .. 134

• Viewing Flash Remoting log entries... 137
117

About using Flash Remoting MX for Microsoft .NET
Macromedia Flash Remoting MX exposes ASP.NET technologies as remote services to
Flash applications, which are accessible as ActionScript functions. A variety of Microsoft
.NET technologies can serve as remote services, including ASP.NET pages, web services,
and assembly methods. A Flash developer writes ActionScript that uses a library of
functions called NetServices to connect to a remote .NET server, get a reference to the
remote service, and invoke the remote service’s functions.

To transport messages, Flash Remoting MX uses a binary message format called Action
Message Format (AMF) delivered over HTTP and modeled on the Simple Object Access
Protocol (SOAP) used in web services implementations. AMF is smaller and faster than
standard SOAP, and is purely asynchronous and event-driven. It lets you send a variety of
data types, including RecordSets, primitives like integers, strings, XML documents, and
dates across the Internet using HTTP.

The Flash Remoting gateway acts as a front controller on the ASP.NET runtime that
handles the conversion of data types from ActionScript to the .NET Common Language
Runtime (CLR) and so on. When the gateway receives a service request, the request
passes through a set of filters that handle serialization, logging, and security before
arriving at a service adapter designed to handle the service and invocation type.

Flash Remoting MX contains four service adapters for .NET technologies:
• ASP.NET adapter
• ADO.NET data binding adapter
• Web services adapter
• Assembly (*.dll)

Flash Remoting MX for .NET requires the .NET Framework SDK to be installed. To
check if you have the .NET Framework installed, open to the Windows Control Panel
and double-click the Add/Remove Programs icon. In the Add/Remove Programs dialog
box, look for Microsoft .NET Framework SDK. If you do not see it, go to the Microsoft
website to download the SDK at http://msdn.microsoft.com/downloads/
default.asp?url=/downloads/sample.asp?url=/msdn-files/027/000/976/
msdncompositedoc.xml.

Where does Flash Remoting MX fit into the Microsoft .NET framework?
When embedded in ASPX pages with other server controls that render HTML, a Flash
application that uses Flash Remoting MX becomes part of the client tier of a .NET
application. Flash Remoting MX can be used as a custom server control in ASP.NET
pages in .NET Web Form applications, or as a namespace in .NET DLL files,
code-behind class files, and web services. A .NET assembly (flashgateway.dll), located
within the local assembly cache of your ASP.NET application, provides the Flash
Remoting functionality.

To assist you in planning your Flash applications, a design pattern represents a solution
to a frequently experienced problem and provides a way to standardize coding practices
across a complex project. Many design patterns are used in the context of a
118 Chapter 7 Using Flash Remoting MX for Microsoft .NET

model-view-controller architecture, in which you separate data access functionality from
the user interface and control logic that uses that functionality.

Like an ASPX page, a Flash application represents the view portion. The Flash MX
Player, running in a web browser or in stand-alone mode, is the client in which the view
is rendered. The Flash Remoting gateway is a front controller that translates interactions
with the Flash-based view into actions that server-side .NET technologies perform.

Two design patterns, the Value Object and Session Facade patterns, can be particularly
useful with Flash Remoting MX. Both patterns can reduce the number of remote method
calls required in a Flash application.

You can use a value object to send a coarse-grained view of data to the server and get back
fine-grained data. For example, you can call a single method on a value object that
aggregates several method calls on several different web services. The method result is
returned to the Flash application as an ActionScript result object from which you can
access data locally. This pattern can help reduce network traffic and response time.

The facade structural design pattern can be particularly useful with Flash Remoting MX
by reducing the number of remote method calls required in a Flash application. You can
use a service facade to provide a single point of contact to a set of ASPX pages or DLL
methods. You can call methods on a DLL facade that is capable of calling various
methods on several other DLLs, ASPX pages, or web services, depending on the user’s
current context in the application. This pattern reduces network traffic and makes it
easier to support different types of clients, change the enterprise data model, or change
the server implementation.

For more information on the .NET architecture and design patterns, go to http://
msdn.microsoft.com/architecture/.
About using Flash Remoting MX for Microsoft .NET 119

Understanding the Flash Remoting MX for Microsoft .NET directory structure

To enable an ASP.NET application with Flash Remoting MX, you place the Flash
Remoting assembly in the application’s local assembly cache (bin directory) and register
the assembly in the application’s web.config file. In the simplest form, your ASP.NET
application directory structure might look like the following figure:

As the figure shows, the local assembly cache in the myASPApp directory contains the
Flash Remoting assembly, flashgateway.dll. Also, to connect a Flash application with a
remote service, you must reference a physical resource in your application’s directory in
the web root. Flash Remoting MX automatically installs a blank ASPX page named
gateway.aspx, but you can use any ASPX file in the application directory.

The web.config file contains the registration for the flashgateway.dll. The HttpModule
reference handles all web requests to ASP.NET resources. Here is an example:

<httpModules>
<add name="GatewayController"

type="FlashGateway.Controller.GatewayController,flashgateway" />
</httpModules>

If the request contains AMF, Flash Remoting MX proceeds with the request.

Note: The Flash Remoting MX for .NET installer creates a directory in your webroot named
flashremoting. Inside the flashremoting directory, you will find a local assembly cache (bin
directory) and a Samples directory, which contains example Flash applications.
120 Chapter 7 Using Flash Remoting MX for Microsoft .NET

Setting up a Flash Remoting-enabled ASP.NET application
Before you can start development with Flash Remoting MX, you must set up your
ASP.NET application. The Flash Remoting MX for .NET installer creates a
preconfigured application for you named flashremoting. You can find the flashremoting
folder in your IIS webroot, such as C:/Inetpub/wwwroot/flashremoting.

When creating the directory structure for your own ASP.NET application that uses Flash
Remoting MX, you must assign specific security permissions to the local assembly cache.
Using Windows 2000 Professional as the operating system, the following procedure
creates an ASP.NET application directory for Flash Remoting MX:

1 In your webroot, create a new folder named myASPApp.

2 In the myASPApp folder, create a new folder named bin. The bin folder serves as the
local assembly cache.

3 Copy the Flash Remoting assembly, flashgateway.dll, from the installation directory
to the bin folder in the myASPApp directory.

4 Using your mouse, right-click the bin folder. In the submenu that appears, select
Properties. In the Properties dialog box, select the Security tab. In the Security panel,
add the ASPNET user and give it Write access. Click OK.

5 In the myASPApp folder, create a blank ASPX page. The gateway URL points to this
page.

6 Copy the web.config file from the flashremoting directory to the myASPApp
directory. For Flash Remoting MX, the most important part of the web.config file is
the httpModule tag that registers the Flash Remoting assembly, as the following
example shows:
<httpModules>

<add name="GatewayController"
type="FlashGateway.Controller.GatewayController,flashgateway" />

</httpModules>

Your Flash Remoting-enabled ASP.NET application directory is now ready to use.
About using Flash Remoting MX for Microsoft .NET 121

Calling ASP.NET pages from Flash
This section describes calling an ASPX page from Flash using Flash Remoting MX,
working with the Flash Remoting custom server control in ASPX pages, using the Flash
Remoting namespace in code-behind files, and so on. For more information on specific
topics, see the following sections:
• Invoking ASPX pages in ActionScript
• Using the Flash Remoting custom server control in ASPX pages
• Using the Flash Remoting namespace in code-behind files
• Using ASP.NET state management with Flash Remoting MX
• Using ASP.NET exception handling

Making an ASP.NET page available to Flash Remoting MX
To call an ASP.NET (*.aspx) page from Flash Remoting MX, the ASPX page must reside
within the directory or subdirectories of a Flash Remoting-enabled .NET application in
the webroot.

Getting a reference to an ASPX-based service in ActionScript
Before calling an ASPX-based service from ActionScript in a Flash application, you must
get a reference to the page.

To get a reference to the ASPX page:

1 Include the NetServices.as file:
#include "NetServices.as"

2 Specify the default Flash Remoting gateway URL:
NetServices.setDefaultGatewayUrl("http://localhost/myASPApp/default.aspx");

The gateway URL must reference an ASPX page inside the application directory. The
setDefaultGatewayURL function should only be used during development in the Flash
MX authoring environment. When you deploy the Flash application, you should
supply the gateway URL using a parameter in the HTML that embeds the SWF file
in the web page.

3 Connect to the Flash Remoting gateway:
gatewayConnection = NetServices.createGatewayConnection();

4 Get a reference to the ASPX page; you must provide the fully qualified path to the
directory that contains the page to invoke, as shown in the following example:
ASPXservice = gatewayConnnection.getService("myASPApp", this);

The first parameter specifies the directory that contains the ASPX page. The second
parameter of the getService function, this, specifies that the result of service function
calls are returned to this Flash timeline. For more information, see Chapter 2,
“Handling service results” on page 27.
122 Chapter 7 Using Flash Remoting MX for Microsoft .NET

Invoking ASPX pages in ActionScript
Once you have a reference to the ASPX page, you can use ActionScript functions to
invoke it. For example, the following ActionScript code invokes the ASPX page
myASPPage.aspx, assuming that ASPXservice represents your reference to the directory
that contains the ASPX page:
function getASPXPage()
{

ASPXservice.myASPPage();
}

The ASPX page’s file name, myASPPage.aspx, becomes the function name, myASPPage, in
the reference to the page’s directory structure.

Using the Flash Remoting custom server control in ASPX pages
To access data passed from or return results to Flash applications in ASPX pages, you use
the Flash Remoting custom server control in your ASPX page. The Flash Remoting
server control is provided by the flashgateway DLL, which is located in the local assembly
cache (bin directory) of your application. Like any custom server control, you must first
register it in your ASPX page, as the following example shows:

<%@ Register TagPrefix="Macromedia" Namespace="FlashGateway"
Assembly="flashgateway" %>

The Register directive establishes the tag prefix (Macromedia), namespace (FlashGateway),
and the assembly that provides the functionality (flashgateway). After you register the
custom server control in your ASPX page, you can use it to pass data to Flash
applications, as the following example shows:

<Macromedia:Flash ID="Flash" runat="server">
Hello from .NET!

</Macromedia:Flash>

When invoked from the Flash application, the string Hello from .NET! is returned.

In addition to passing simple strings, you can write code in a .NET-supported language
that accesses parameters passed from Flash and returns processed results to Flash. The
Flash Remoting custom server control contains two properties for accessing passed
parameters and returning results: Flash.Params and Flash.Result.

The Flash.Params property is a list consisting of parameters passed from a Flash
application. The parameters arrive in the order that they were passed from the service
function call in the ActionScript code of a Flash application. The Flash.Result property
returns its value to Flash.

You can access Flash parameters like any other value in .NET, as the following C#
example shows:

<%@ Page Language="C#" debug="true" %>
<%@ Register TagPrefix="Macromedia" Namespace="FlashGateway"

Assembly="flashgateway" %>
<Macromedia:Flash ID="Flash" Runat="Server" />
<%

String message = "Hi ";
if (Flash.Params.Count > 0)
Calling ASP.NET pages from Flash 123

{
message += Flash.Params[0].ToString();

}
Flash.Result = message;

%>

Between the rendering blocks (<%...%>), the if statement condition, Flash.Params.Count
> 0, evaluates the Flash.Params list for the number of parameters present. If a parameter is
present, the parameter value, as a string, is appended to the message variable. Finally, the
message variable is assigned into the Flash.Result property, which is returned to Flash.

If more than one parameter is passed from Flash, you access the parameters in your .NET
application in the same order that they were passed from the Flash application. For
example, the following ActionScript function passes two parameters, assuming firstname
and lastname are input text fields in a Flash application:

ASPXservice.myASPPage(firstname.text, lastname.text);

In an ASPX page, for example, you access the parameters using strict array syntax, as the
following VB.NET code shows:

<%@ Page language="vb" debug="true" CodeBehind="myASPPage.aspx.vb"
AutoEventWireup="false" Inherits="myASPApp.myASPPage" %>

<%@ Register TagPrefix="Macromedia" Namespace="FlashGateway"
Assembly="flashgateway" %>

<Macromedia:Flash ID="Flash" Runat="Server" />
<%

dim message as string
message = "Hi "
if Flash.Params.Count > 0 then

message = message & Flash.Params(0).ToString() & " " &
Flash.Params(1).ToString()

end if
Flash.Result = message

%>

In the code, the Flash.Params(0) property represents the firstname parameter, and the
Flash.Params(1) variable represents the lastname parameter. The Page directive references
a code-behind file, myASPPage.aspx.vb.

Using the Flash Remoting namespace in code-behind files
In ASP.NET applications, you can separate business logic from user interface code using
code-behind files. In the code-behind files, you use the Flash Remoting namespace to
access parameters from and return results to Flash. To use code-behind files, you use the
codebehind property of the page directive in an ASPX page, as the following example
shows:

<%@ Page Language="c#" Debug="true" codebehind="myASPPage.aspx.cs"
autoeventwireup="false" Inherits="myASPApp.myASPPage" %>

<%@ Register TagPrefix="Macromedia" Namespace="FlashGateway"
Assembly="flashgateway" %>

<MACROMEDIA:FLASH id="Flash" Runat="Server" />
124 Chapter 7 Using Flash Remoting MX for Microsoft .NET

In the example, the page directive references the code-behind file in the codebehind
property. The fully qualified class name is used in the Inherits property to inherit the
methods of the code-behind file. You must also use the register directive to register the
Flash Remoting custom server control, and then use the server control in the page.

In the code-behind file itself, you declare the Flash namespace as a protected variable in
the class definition, as the following C# example shows:

namespace myASPApp
{

public class myASPPPage : System.Web.UI.Page
{

protected FlashGateway.Flash Flash;
...
}

}

The following VB.NET example performs the same operation:

Namespace Samples.ado
 Public Class CustomerInfo
 Inherits System.Web.UI.Page
 Protected Flash As FlashGateway.Flash

After you establish the Flash Remoting namespace, you can manipulate the server control
properties in the Page_Load method definition, as the following VB example shows:

Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load{

dim message as string
message = "Hi "
if Flash.Params.Count > 0 then

message = message & Flash.Params(0).ToString() & " " &
Flash.Params(1).ToString()

end if
Flash.Result = message

End Sub

In the code, if the Flash.Params.Count property is at least one, two parameters passed
from Flash are appended to a string and returned to Flash.

Using ASP.NET state management with Flash Remoting MX
Flash Remoting MX supports ASP.NET cookie-based state management, which
maintains a user session using HTTP header information. Flash Remoting MX
maintains the session ID automatically by passing the session ID to the server in each
subsequent service function request. To access session variables in Flash applications
using Flash Remoting MX, you can code a service function that returns session variables
using the Flash.Result property.

Note: Flash Remoting MX does not support .NET cookieless state management.
Calling ASP.NET pages from Flash 125

Setting and getting session variables with Flash Remoting MX

Using the Flash Remoting custom control properties, you can access and set the values of
session variables. Session variables persist during a browser session from page to page. If
you use Flash Remoting MX to return session variables, Flash movies embedded in
different pages can access a common set of data.

To enable state management in an ASP.NET application, you use the statemanagement tag
in the config.web file, as the following example shows:

<configuration>
<sessionstate

mode="inproc"
cookieless="false"
timeout="20"/>

</configuration>

To return a session variable, you use the Flash.Result property, as the following example
shows:

<%@ Page language="c#" debug="true" %>
<%@ Register TagPrefix="Macromedia" Namespace="FlashGateway"

Assembly="flashgateway" %>
<Macromedia:Flash ID="Flash" Runat="Server" />
<%

Flash.Result = session.myPreference;
%>

In the code, the value of the myPreference variable is assigned in the Flash.Result
property, which is returned to Flash. To set a session variable using a variable passed from
Flash Remoting MX, you use the Flash.Params property, as the following example shows:

<%@ Page language="c#" debug="true" %>
<%@ Register TagPrefix="Macromedia" Namespace="FlashGateway"

Assembly="flashgateway" %>
<Macromedia:Flash ID="Flash" Runat="Server" />
<%
if (Flash.Params.Count > 0)
{

session.myPreference = Flash.Params[0].ToString();
}
%>

In the code, the parameter passed from Flash is assigned into the myPreference session
variable.
126 Chapter 7 Using Flash Remoting MX for Microsoft .NET

Using ASP.NET exception handling
To return custom ASP.NET exceptions to Flash, you use the throw statement. You can
throw exceptions in the context of a try/catch statement, an if/else statement, and so
on. For example, the following C# snippet throws an exception:

if (Flash.Params.Count == 0)
{

throw new Exception("No arguments received.");
}

In the code, if the Flash.Params.Count variable is zero, an exception is thrown. The
exception message returns to Flash as part of the onStatus error object. To display the
exception in Flash, you use the error.description property, as the following ActionScript
snippet shows:

function serviceFunctionName_Status (result)
{

textField = error.description;
}

In the code, the error.description property is assigned into the textField variable,
which represents a text field in the Flash application. If you want to display the stack
trace information returned from .NET, use the error.details property.
Calling ASP.NET pages from Flash 127

Using ADO.NET objects with Flash Remoting MX
Flash Remoting MX provides a service adapter for binding ADO.NET DataTables and
DataViews to the Flash Remoting custom server control. To bind data sets to the custom
server control, you use the control’s DataSource property and DataBind method. In
ActionScript, the results are exposed as a RecordSet object.

The following C# example could be used in a code-behind file or in the ASPX page that
contains the Flash Remoting server control, as the following example shows:

<%@ Page Language="c#" Debug="true" %>
<%@ Register TagPrefix="Macromedia" Namespace="FlashGateway"

Assembly="flashgateway" %>
<Macromedia:Flash id="Flash" Runat="Server" />
<%

//create a SQL connection object and open a connection
String source1 = "server=(local)\\NetSDK;" + "id=QSUser;pwd=QSPassword;" +

"database=Northwind";
sqlConnection = new SqlConnection(source1);
sqlConnection.Open();

//create the SQL statement
String selectCountry = "SELECT DISTINCT Country FROM Customers ORDER BY Country

ASC";

//query the database
SqlDataAdapter countryAdapter = new SqlDataAdapter(selectCountry,

sqlConnection);

//create a dataset object
DataSet countryData = new DataSet();

//fill the dataset with the query results
countryAdapter.Fill(countryData, "Customers");

//assign the dataset into the flash.datasource property
Flash.DataSource = countryData.Tables["Customers"];

//bind the datatable to the custom server control
Flash.DataBind();

//close the SQL connection
sqlConnection.Close();

%>

In the code, the countryData DataSet is created from a SQL query to a database. Next,
the countryData DataSet object is assigned into the Flash.DataSource property. Finally,
the DataSet object is bound to the Flash Remoting custom server control using the
Flash.DataBind method.

DataTables are serialized by Flash Remoting MX to a RecordSet in ActionScript.
DataSets, which are collections of DataTables, are serialized by Flash Remoting MX to an
associative array of RecordSets back in ActionScript.
128 Chapter 7 Using Flash Remoting MX for Microsoft .NET

The following Visual Basic .NET example shows the Page_Load method definition in a
code-behind file that performs the same operation as the previous code example:

Private Sub Page_Load(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles MyBase.Load

'create a SQL connection object and open a connection
Dim source1 As String
source1 = "Provider=Microsoft.Jet.OLEDB.4.0;Data

Source=C:\\inetpub\\wwwroot\\flashremoting\\Samples\\ado\\Northwind.mdb;"
sqlConnection = New OleDb.OleDbConnection()
sqlConnection.ConnectionString = source1
sqlConnection.Open()
'create the SQL statement
Dim selectAll As String
selectAll = "SELECT ContactName, City, Phone, Country FROM Customers"

'Initialize a DataSet contactData and string selectContactData
Dim contactData As New DataSet()
Dim selectContactData As String

'Check for parameters from Flash
If (Flash.Params.Count = 0) Then

'create the SQL statement
Dim selectCountry As String
selectContactData = "SELECT DISTINCT Country FROM Customers ORDER BY Country

ASC"
Else

Dim selectedCountryName As String
'assign parameter passed from Flash to variable
selectedCountryName = Flash.Params(0).ToString()
Dim selectContactData As String
'insert Flash parameter into SQL statement
selectContactData = "SELECT ContactName, City, Phone FROM Customers WHERE

Country = \'" + selectedCountryName + "\'"
End If

'create the data adapter object
Dim countryAdapter As System.Data.OleDb.OleDbDataAdapter

'create a dataset object
countryAdapter = New System.Data.OleDb.OleDbDataAdapter(selectAll,

sqlConnection)

'fill the dataset with the query results
countryAdapter.Fill(contactData, "Customers")

'assign the dataset into the flash.datasource property
Flash.DataSource = contactData.Tables("Customers")

'bind the datatable to the custom server control
Flash.DataBind()

'close the SQL connection
sqlConnection.Close()

End Sub
Using ADO.NET objects with Flash Remoting MX 129

In the code, the contactData DataSet is created from a SQL query to a database. Next,
the contactData DataSet object is assigned into the Flash.DataSource property. Finally,
the DataSet object is bound to the Flash Remoting custom server control using the
Flash.DataBind method and returned to Flash.

Displaying a RecordSet in Flash with ActionScript
To display a RecordSet in a Flash UI component, you can use the DataGlue ActionScript
file, which is installed with the Flash Remoting Components. You must first import the
ActionScript file into your Flash application with the include directive, as the following
example shows:

#include "DataGlue.as"

You can use the DataGlue.bindFormatStrings function to display the RecordSet in a Flash
UI component, such as a ComboBox or a ListBox. The following example binds the
result RecordSet to the displayNames ListBox UI component:

DataGlue.bindFormatStrings(displayNames, result, "#ContactName#", "#customerID#");

In the code, the last two arguments passed to the function (#ContactName# and
#customerID#) are RecordSet column names. The ContactName column is displayed in the
UI component, while the customerID column is returned when a user selects a particular
record in the component.

The following ActionScript code connects to an ASPX page, returns a RecordSet, and
displays the RecordSet in the displayNames ComboBox UI component:

//import the ActionScript classes

#include "NetServices.as"
#include "DataGlue.as"
//get a reference to the ASPX-based service
if (inited == null)
{

inited = true;
NetServices.setDefaultGatewayUrl("http://localhost/myASPApp/default.aspx");
gatewayConnection = NetServices.createGatewayConnection();
ASPXservice = gatewayConnnection.getService("myASPApp", this);
//call the ASPX page
ASPXservice.myASPPage();

}
//handler for ASPX page results
function myASPPage_Result(result)
{

DataGlue.bindFormatStrings(displayNames, result, "#ContactName#",
"#customerID#");

}

You can also use the DataGlue.BindFormatFunction function to create custom formatting
for your RecordSets. For more information on displaying RecordSets in ActionScript,
Chapter 3, “Using Flash Remoting Data in ActionScript” on page 35.
130 Chapter 7 Using Flash Remoting MX for Microsoft .NET

Calling web services from Flash
Using the Flash Remoting web service adapter, you can call web services from Flash that
are described by the Web Services Description Language (WSDL). You must first
generate a local web service proxy to interact with web services. After you create the
proxy, the ActionScript in your Flash application can then invoke web service methods
through the proxy, which handles sending and receiving Simple Object Access Protocol
(SOAP) messages with the remote web service.

In .NET, you can generate proxy assemblies with the WSDL Tool (wsdl.exe). Flash
Remoting MX for .NET also uses the WSDL Tool to generate SOAP proxies for web
services automatically from valid WSDL, either local or remote. In addition, Flash
Remoting MX does not restrict you to .NET-based web services. Rather, any
WSDL-described web service is available to Flash Remoting MX.

If you want to invoke web services using a .NET web service proxy assembly of your own
that contains the web service definition, place the DLL file into the local assembly cache
of your ASP.NET application. The proxy DLL must have the exact same name as the web
service name, as described by the WSDL's service element. To invoke the web service
proxy from ActionScript, supply the web service's fully qualified WSDL URL as the
service address argument of the gatewayConnection.getService function, and use the web
service's method names as the service function names.

Invoking web service methods using Flash Remoting MX
Flash Remoting MX uses the .NET WSDL Tool to generate the necessary proxy classes
automatically by specifying a valid URL to a WSDL file or to a URL that can generate a
WSDL file, such as a .NET ASMX file. To invoke a local web service in an ASMX file
from Flash, you enter the URL to the file appended with ?wsdl, as the following
ActionScript example shows:

NetServices.setDefaultGatewayUrl("http://localhost/myASPApp/default.aspx");
gatewayConnection = NetServices.createGatewayConnection();
flashService = gatewayConnnection.getService("http://localhost/myASPApp/

ExampleWebService.asmx?wsdl", this);

In the getService function, you use the URL to the WSDL file, or a file capable of
generating WSDL, as the service name. In the ASMX file, a getMessage method has been
defined, as the following C# example shows:

[WebMethod]
public string getMessage()
{

return "Flash Remoting makes web services easy!";
}

To call this method in ActionScript, you use the method name in the context of the
flashService connection object, as the following ActionScript example shows:

flashService.GetMessage();
Calling web services from Flash 131

To display the results of the method invocation in Flash, you use an event handler, as the
following example shows:

function getMessage_Result(result)
{

serviceMessage.text = result;
}
function getMessage_Status(result)
{

serviceMessage.text = error.description;
}

In the code, the results of the getMessage web service method call are displayed in the
serviceMessage dynamic text field. For more information on handling results, see
Chapter 2, “Handling service results” on page 27.

Invoking a remote web service from Flash
Using Flash Remoting MX for .NET, you can invoke any remote .NET-compatible web
service directly from your Flash application with no .NET application development
required. To find a remote web service, go to a public Universal Description, Discovery,
and Integration (UDDI) registry, such as http://www.xmethods.net. Using the WSDL
URL and method names found in the registry, you write ActionScript in your Flash
application to invoke the web service.

To interact with remote web services, just like local web services, Flash Remoting MX
uses the .NET framework’s WSDL Tool (wsdl.exe) to create web service proxies
dynamically in the form of assemblies (*.dll). Remember, you must allow write and
modify permissions for your ASP.NET application’s local assembly cache.

For example, the following ActionScript code connects to a Temperature web service
(http://www.xmethods.net/sd/2001/TemperatureService.wsdl), which returns the local
temperature by U.S. zip code:

#include "NetServices.as"
if (inited == null)
{

inited = true;
NetServices.setDefaultGatewayUrl("http://localhost/myASPApp/default.aspx");
gatewayConnection = NetServices.createGatewayConnection();
webService = gatewayConnnection.getService("http://www.xmethods.net/sd/2001/

TemperatureService.wsdl", this);
webService.getTemp(zip.text);

}
function getTemp_Result(result)
{

tempDisplay.text = result;
}
function getTemp_Status(result)
{

tempDisplay.text = error.description;
}
132 Chapter 7 Using Flash Remoting MX for Microsoft .NET

In the ActionScript code, you replace the directory structure of the getService function
argument with a URL that produces WSDL. The getTemp function maps to the web
service method of the same name. The code assumes that zip represents an input text
field, and tempDisplay represents a dynamic text field.

To see the web service proxy assembly (*.dll) that Flash Remoting MX creates, look in
your local assembly cache for a DLL with the same name as the web service. For the
Temperature web service, look for a DLL named TemperatureService.dll.
Calling web services from Flash 133

Calling ASP.NET assemblies from Flash
Using Flash Remoting MX, you can invoke .NET assembly files (*.dll) from Flash. In
your ActionScript code, you use the fully qualified assembly or class file name in the
getService function, and for the service function name, you use an assembly or class
method name. On the server, you must place your DLL and class files in the local
assembly cache.

Calling assemblies from Flash
In the class file, you reference the Flash Remoting assembly namespace FlashGateway.IO
with the using directive, as the following C# example shows:

using System;
using FlashGateway.IO;
namespace FlashRemoting.EchoTests
{

public class EchoClass
{

public EchoClass()
{

///Public constructor... initialize any member fields here if need be.
}
public string echoString(string s)
{

return s;
}

}
}

In the ActionScript, you use the namespace and public class name defined in the class
file, as the following example shows:

#include "NetServices.as"
#include "NetDebug.as"
if (inited == null)
{

inited = true;
NetServices.setDefaultGatewayUrl("http://localhost/myASPApp/default.aspx");
gatewayConnection = NetServices.createGatewayConnection();
classService =

gatewayConnection.getService("FlashRemoting.EchoTests.EchoClass");
classService.echoString(input.text);

}
function echoString_Result(result)
{

stringDisplay.text = result;
}
function echoString_Status(result)
{

stringDisplay.text = error.description;
}

134 Chapter 7 Using Flash Remoting MX for Microsoft .NET

In the code, you use the fully qualified class name
(FlashRemoting.ClassService.EchoClass) in the getService function. To call an assembly
method, you use the class method name (echoString) as defined in the class file.

Returning an ActionScript object from an assembly
You can use the ASObject class of the FlashGateway.IO namespace to create and
populate ActionScript objects in ASP.NET and return the object to Flash. By passing
ActionScript objects back and forth between the remote service and the Flash
application, you can describe the data being passed with the ASType property of the
ASObject class.

Creating an assembly that returns an ActionScript object

In the assembly, you create an instance of the ASObject class of the FlashGateway.IO
namespace and return it to Flash. The ASType property lets you assign a name to the
object for identification in Flash. To add values to the object, you use the Add method
common to instances of the .NET Collections class, as the following C# example shows:

using System;
using FlashGateway.IO;
namespace FlashRemoting.ObjectTests
{

public class ObjectClass
{

public ObjectClass()
{

///Public constructor... initialize any member fields here if need be.
}
public ASObject returnObject()
{

ASObject aso = new ASObject();
aso.ASType = "Calculator";
aso.Add("x", 100);
aso.Add("y", 300);
Flash.Result = aso;

}
}

}

In the code, an instance of the ASObject object, named aso, is created, and the ASType
property is used to identify the object as Calculator. The Add method inserts key-value
pairs into the object. Finally, the aso object is returned to Flash using the Flash.Result
variable.
Calling ASP.NET assemblies from Flash 135

Handling the ActionScript object in Flash

The following ActionScript handles the ActionScript object returned by the assembly:

#include "NetServices.as"
#include "NetDebug.as"

if (inited == null)
{

inited = true;
NetServices.setDefaultGatewayUrl("http://localhost/myASPApp/gateway.aspx");
gatewayConnection = NetServices.createGatewayConnection();
dataService =

gatewayConnection.getService("FlashRemoting.ObjectTests.ObjectClass",
this);

}

//Ask the server for some raw data...
dataService.returnObject();

//Provide a callback for getNumbers() when the data returns from the server
function returnObject_Result (result)
{
 /*
 Because we expect the result to represent the state of a Calculator instance
 back from the server, we can assume the result will have an add() method.
 */
 resultBox.text = result.add();
}

/*
Rich Client Business Logic
*/
calc = function()
{

this.x = 0;
this.y = 0;

}
calc.prototype.subtract = function()
{

return this.x - this.y;
}
calc.prototype.add = function()
{

return this.x + this.y;
}
Object.registerClass("Calculator", calc);

stop();
136 Chapter 7 Using Flash Remoting MX for Microsoft .NET

Viewing Flash Remoting log entries
Flash Remoting MX writes error messages to the flash.log file in the local assembly cache.
You can change the log file settings in the Windows Registry. The Flash Remoting
registry keys are located at
HKEY_LOCAL_MACHINE\SOFTWARE\Macromedia\Flash
Remoting\1\Registration.

The following table lists the Flash Remoting registry keys:

Registry key Description

Log File Size Maximum number of bytes that the flash.log file can reach before
Flash Remoting MX stops writing entries. The default is 1 MB
(1048576 bytes).

The current log file used by Flash Remoting MX is named flash.log.
When a log file reaches the file size limit, Flash Remoting saves the
flash.log file as flash-yyyyddmmhhmmss.log. Then, Flash
Remoting MX creates a new flash.log file and begins logging
events to that file.

Log Level Sets log message level, including Error (default), Warning,
Information, Debug, or None.
Viewing Flash Remoting log entries 137

138 Chapter 7 Using Flash Remoting MX for Microsoft .NET

CHAPTER 8

Flash Remoting ActionScript

Dictionary
Contents

• Overview of Flash Remoting ActionScript dictionary .. 140

• ActionScript element documentation conventions ... 141

• Contents of the dictionary ... 142

• DataGlue (object) .. 143

• NetConnection (object)... 146

• NetDebug (object)... 158

• NetServices (object) ... 160

• RecordSet (object) ... 164
139

Overview of Flash Remoting ActionScript dictionary
This dictionary describes the syntax and use of Macromedia Flash Remoting
ActionScript elements in Macromedia Flash MX. To use examples in a script, copy the
example code from the ActionScript Dictionary and paste it in the Actions panel in
expert mode.

The dictionary lists all ActionScript elements, including operators, keywords, statements,
actions, properties, functions, objects, components, and methods. For an overview of all
dictionary entries, see “Contents of the dictionary” on page 142. The table in this section
is a good starting point for looking up methods whose object or component class you do
not know.

ActionScript follows the ECMA-262 Standard (the specification written by the European
Computer Manufacturers Association) unless otherwise noted.

There are two types of entries in this dictionary:
• Object and component entries, which provide general information about built-in

objects and the Flash MX components.
• Individual entries for operators, keywords, functions, variables, properties, methods,

and statements.

Use the information in the sample entries to interpret the structure and conventions used
in these two types of entries.
140 Chapter 8 Flash Remoting ActionScript Dictionary

ActionScript element documentation conventions
The following table explains the conventions used for Flash Remoting-related
ActionScript objects. Objects are listed alphabetically with all other elements in the
dictionary.

The following table explains the conventions used for all ActionScript methods and
constructors:

Label Description

Entry title The entry title provides the name of the object or component. The
object or component name is followed by a paragraph that
contains general descriptive information.

Method and property
table

Each object and component entry contains a table listing all of the
associated methods. If the object or component has properties
(often constants), These elements are summarized in an additional
table. All of the methods and properties listed in these tables also
have their own dictionary entries, which follow the object or
component entry.

Constructor If an object or component requires you to use a constructor to
access its methods and properties, the constructor is described in
each object or component entry. This description has all of the
standard elements (syntax, description, and so on) of other
dictionary entries.

Method and property
listings

The methods and properties of an object or component are listed
alphabetically after the object or component entry.

Label Description

Entry title All entries are listed alphabetically. The alphabetization ignores
capitalization, leading underscores, and so on.

Availability This section tells which versions of the Flash Player support the
element. This is not the same as the version of Flash used to author
the content. For example, if you use the Flash MX authoring tool to
create content for Flash Player 5, you can only use ActionScript
elements that are available to Flash Player 5.

Usage This section provides correct syntax for using the ActionScript
element in your code. The required portion of the syntax is in code
font, and the user provided code is in italicized code font. Brackets
([]) indicate optional parameters.

Parameters This section describes any parameters listed in the syntax.

Return value This section identifies what, if any, values the element returns.

Description This section identifies the type of element (for example, an
operator, method, function, and so on) and then describes how to
use the element.

Example This section provides a code sample demonstrating how to use the
element.

See also This section lists related ActionScript dictionary entries.
ActionScript element documentation conventions 141

Contents of the dictionary
All dictionary entries are listed alphabetically. Methods that are associated with an object
or component are listed with the object or component name. For example, the
replaceItemAt method of the RecordSet object is listed as RecordSet.replaceItemAt.

The following table lists all the ActionScript objects and methods for Flash Remoting:

DataGlue (object)

DataGlue.bindFormatFunction DataGlue.bindFormatStrings

NetConnection (object)

Constructor for NetConnection NetConnection.getDebugID

NetConnection.addHeader NetConnection.getService

NetConnection.call NetConnection.setCredentials

NetConnection.close NetConnection.setDebugID

NetConnection.connect NetConnection.trace

NetConnection.getDebugConfig

NetDebug (object)

NetDebug.trace

NetServices (object)

NetServices.createGatewayConnection NetServices.setDefaultGatewayURL

RecordSet (object)

Constructor for RecordSet RecordSet.isFullyPopulated

RecordSet.addItem RecordSet.isLocal

RecordSet.addItemAt RecordSet.removeAll

RecordSet.addView RecordSet.removeItemAt

RecordSet.filter RecordSet.replaceItemAt

RecordSet.getColumnNames RecordSet.setDeliveryMode

RecordSet.getItemAt RecordSet.setField

RecordSet.getItemID RecordSet.sort

RecordSet.getLength RecordSet.sortItemsBy

RecordSet.getNumberAvailable
142 Chapter 8 Flash Remoting ActionScript Dictionary

DataGlue (object)
The DataGlue object is for Flash Remoting use only.

The DataGlue ActionScript methods let you bind RecordSet objects to Flash MX UI
components. The DataGlue object offers a way to format data records for use in a ListBox,
ComboBox, or other UI component.

To use DataGlue, you must first import the DataGlue.as file in the first frame of the Flash
application with the include command, as follows:

#include “DataGlue.as”

Method summary for the DataGlue object

Method Description

DataGlue.bindFormatFunction Binds a data provider, such as a RecordSet object, to a data
consumer, such as a ListBox component, and formats the
data using a function, which you create.

DataGlue.bindFormatStrings Binds a data provider, such as a RecordSet object, to a data
consumer, such as a ListBox, and formats the provider data
for the consumer.
DataGlue (object) 143

DataGlue.bindFormatFunction

Availability • Flash Player 6.
• Flash Remoting MX.

Usage DataGlue.bindFormatFunction(dataConsumer, dataProvider, formatFunction)

Parameters

Return value Nothing.

Description Method. Binds a data provider, such as a RecordSet object, to a data consumer, such as a
ListBox component, and formats the data using a function, which you create.

Example The following example binds the result RecordSet object to the dataView2 UI
component in the Flash application:

function myFormatFunction (record)
{

// the label is the parkname record field, translated to lower case
var theLabel = record.parkname.toLowerCase();

// the data is the length of the parkname record field
var theData = record.parkname.length;

// return the label and value to the caller
return {label: theLabel, data: theData};

}
//call the bindFormatFunction method
DataGlue.bindFormatFunction(dataView2, result, myFormatFunction);

In this example, the theLabel variable is displayed in the UI component, and the theData
variables are returned by the getValue function.

See also DataGlue.bindFormatStrings

Parameter Description

dataConsumer A ListBox or similar UI component to which you want to bind a data
provider, such as a RecordSet object. The data consumer must support
data provider objects (have a setDataProvider method).

dataProvider A RecordSet object or other object that implements the standard data
provider interface.

formatFunction A user-defined function that takes a data record as a parameter. This
function must return an ActionScript object that contains the fields
Label and Data.
144 Chapter 8 Flash Remoting ActionScript Dictionary

DataGlue.bindFormatStrings

Availability • Flash Player 6.
• Flash Remoting MX.

Usage DataGlue.bindFormatStrings(dataConsumer,dataProvider,labelString,
dataString)

Parameters

Return value Nothing.

Description Method. Binds a data provider, such as a RecordSet object, to a data consumer, such as a
ListBox, and formats the data from the data provider for the consumer.

Example The following example binds the myRecordSet RecordSet object to the myComboBox UI
component in the Flash application:

DataGlue.bindFormatStrings (myComboBox, myRecordSet, "#parkname# (#parktype#)",
"#city#, #state# #zipcode#");

In this example, the parkname and parktype variables are displayed in the UI
component and the city, state, and zipcode variables are returned by the getValue
function.

See also DataGlue.bindFormatFunction

Parameter Description

dataConsumer A Flash MX UI component, such as ListBox or ComboBox. The data
consumer must support data provider objects (have a setDataProvider
method).

dataProvider A RecordSet or other object that implements the dataProvider interface

labelString A format string that defines how to format fields of a data record as a label,
which is the text that appears in the UI component. The format string is
arbitrary text that can contain record field names enclosed in pound signs
(#)

dataString A format string that defines how to format fields of a data record as the
data associated with the record
DataGlue.bindFormatStrings 145

NetConnection (object)
The NetConnection object manages a bidirectional connection between the Flash Player
and the Flash Remoting service. The NetServices methods use the NetConnection object
to call functions on and return results from application servers.

You normally create a NetConnection object by calling the
NetServices.createGatewayConnection method. You can also create a NetConnection
object directly as described in “Constructor for NetConnection” on page 147.

Method summary for the NetConnection object

Method Description

NetConnection.addHeader Adds a context header to the Action Message Format
(AMF) packet structure.

NetConnection.call Invokes a command or method on the server.

NetConnection.close Closes the connection with the application server.

NetConnection.connect Connects to the gateway on the application server.

NetConnection.getDebugConfig Retrieves the NetConnection object's debug subscribed
events NetDebugConfig object.

NetConnection.getDebugID Retrieves the NetConnection object's debugging
identifier.

NetConnection.getService Creates a Flash Remoting service object.

NetConnection.setCredentials Sends authorization credentials to Flash Remoting MX.

NetConnection.setDebugID Sets a debug identifier for a NetConnection object.

NetConnection.trace Sends a client trace message associated with the
NetConnection to the NetConnection Debugger.
146 Chapter 8 Flash Remoting ActionScript Dictionary

Constructor for NetConnection

Availability • Flash Player 6.
• Flash Remoting MX.

Usage new NetConnection()

Parameters None.

Return value A NetConnection object.

Description Constructor. Creates an object that can connect the Flash Player to an application server.

Example The following code creates a connection object and connects to a gateway.

function onServerCon()
{

//Makes a new connection object
gatewaycon = new NetConnection();

//Connects to the gateway on the server
gatewaycon.connect(“http://www.mySite.com/flashservices/gateway”);

}

See also NetConnection.connect, NetServices.createGatewayConnection
Constructor for NetConnection 147

NetConnection.addHeader

Availability • Flash Player 6.
• Flash Remoting MX.

Usage connectionObject.addHeader(name, mustUnderstand, object)

Parameters

Return value Nothing.

Description Method. Adds a context header to the Action Message Format (AMF) packet structure.
This header is included with every AMF packet sent over this connection. This method is
used by the NetConnection.setCredentials method; you do not normally use it directly in
Flash applications.

Parameter Description

name A string that is recognized by Flash Remoting MX and the
application server that triggers some kind of processing.

mustUnderstand A Boolean value that specifies whether the server must understand
and process this header prior to handling any of the following
headers or messages.

object Any ActionScript object
148 Chapter 8 Flash Remoting ActionScript Dictionary

NetConnection.call

Availability • Flash Player 6.
• Flash Remoting MX.

Usage connectionObject.call(remoteMethod, resultObject | null [, p1,...,pN])

Parameters

Return value Nothing.

Description Method. Invokes a command or method on the server. You must create a server-side
function to execute the remote method.

Example The following send function checks for a message, sends it to a remote service, then
clears the local string:

function send()
{

if (length(msg) > 0) {
myConnection.call("messageService.message", null, msg);

}
msg = "";

}

Parameter Description

remoteMethod Parameter in the form serviceName.methodName, where the
interpretation of serviceName depends on Flash Remoting MX and
the application server.

resultObject An object parameter that is needed only when the sender is
expecting a result. The result object can be any user-defined object
that implements a method named onResult. The object’s onResult
method will get called when the result arrives. If you do not need a
result object, pass null.

p1,...pN Optional parameters to be passed to the specified method.
NetConnection.call 149

NetConnection.close

Availability • Flash Player 6.
• Flash Remoting MX.

Usage connectionObject.close()

Parameters None.

Return value Nothing.

Description Method. Makes the URL previously specified with NetConnection.connect into a null
value, thereby removing the connection configuration for the remote gateway.
Subsequent attempts to call Flash Remoting MX using the NetConnection object fail.
After using the NetConnection.close method, you must call NetConnection.connect to
define a new URL.

Example The following onServDiscon() function closes the gatewaycon Flash Remoting
connection:

function onServDiscon()
{

gatewaycon.close();
}

See also NetConnection.connect
150 Chapter 8 Flash Remoting ActionScript Dictionary

NetConnection.connect

Availability • Flash Player 6.
• Flash Remoting MX.

Usage connectionObject.connect(targetURL)

Parameters

Return value A Boolean value of true if the protocol part of the URL (the http: or https:) is valid,
false otherwise.

Description Method. Defines the Flash Remoting URL that is used during Flash Remoting service
function calls. This method does not communicate with the server. When Flash
Remoting MX executes a service function call, it makes an HTTP or HTTPS connection
to the application servers. This connection only persists until the results of the call are
returned to the Flash application.

Example The following example configures the connection information for Flash Remoting MX
to access the mySite server:

gatewaycon = new NetConnection();
gatewaycon.connect(“http://www.mySite.com/flashservices/gateway”);

See also NetConnection.close

Parameter Description

targetURL The Flash Remoting URL

[protocol://] host [:port] /appName
The value of appName depends on the type of gateway and the
particular configuration of Flash Remoting MX. For more information,
see “Identifying the gateway” on page 21.

If you omit protocol://, Flash assumes you want to connect to an
application server using the nonsecure http:// protocol. The other
acceptable value for protocol is https.

For example, the following URLs are formatted correctly:

• http://localhost:8500/flashservices/gateway
• https://www.myCompany.com/myMainDirectory/

securegateway.aspx/flashremoting/gateway
NetConnection.connect 151

NetConnection.getDebugConfig

Availability • Flash Player 6.
• Flash Remoting MX.

Usage connectionObject.getDebugConfig()

Parameters None.

Return value The NetConnection object's debug subscribed events NetDebugConfig object.

Description Method. Retrieves the NetConnection object's debug subscribed events NetDebugConfig
object.

Example The following example demonstrates the getDebugConfig method using the NetServices
object:

#include “NetDebug.as”
#include “NetServices.as”
NetServices.setDefaultGatewayURL(“http://www.mySite.com/flashservices”);
NetServices.createGatewayConnection();
serviceObject = gatewayConnection.getService(“myService”, this);
gatewayConnection.trace("I just created myService.");
gatewayConnection.setDebugID(“Gateway Connection”);
var debugConfig = gatewayConnection.getDebugConfig();
152 Chapter 8 Flash Remoting ActionScript Dictionary

NetConnection.getDebugID

Availability • Flash Player 6.
• Flash Remoting MX.

Usage connectionObject.getDebugID()

Parameters None.

Return value The NetConnection object's debug identifier.

Description Method. Retrieves the NetConnection object's debug identifier.

Example The following example demonstrates the getDebugID method using the NetServices
object:

#include “NetDebug.as”
#include “NetServices.as”
NetServices.setDefaultGatewayURL(“http://www.mySite.com/flashservices”);
NetServices.createGatewayConnection();
serviceObject = gatewayConnection.getService(“myService”, this);
gatewayConnection.trace("I just created myService.");
gatewayConnection.setDebugID(“Gateway Connection”);
var debugID = gatewayConnection.getDebugID();

See also NetConnection.setDebugID
NetConnection.getDebugID 153

NetConnection.getService

Availability • Flash Player 6
• Flash Remoting MX.

Usage connectionObject.getService(serviceName, defaultResponder)

Parameters

Return value A Flash Remoting service object.

Description Method. Creates a Flash Remoting service object, which allows access to application
server functions.

Example The following example creates a connection to a gateway and creates a service object for
accessing the myService application service. This example uses the
NetServices.createGateway method, not the NetConnection.connect method, to create the
connection to the gateway.

#include “NetServices.as”
NetServices.setDefaultGatewayURL(“http://mySite.com/flashservices/gateway”);
gatewayConnection = NetServices.createGatewayConnection();
serviceObject = gatewayConnection.getService(“myService”, this);

Parameter Description

serviceName A string that identifies the Flash Remoting service name.

defaultResponder The Flash movie object to receive the results of Flash Remoting
service functions.
154 Chapter 8 Flash Remoting ActionScript Dictionary

NetConnection.setCredentials

Availability • Flash Player 6.
• Flash Remoting MX.

Usage connectionObject.setCredentials(username, password)

Parameters

Return value Nothing.

Description Method. Defines a set of credentials to be presented to the server on all subsequent
requests. SetCredentials can be called more than once. Currently, ColdFusion MX and
JRun support this method.

Example The following example creates a gateway connection, sets the user credentials for the
connection, and creates a service object to represent the remote service:

#include “NetServices.as”
NetServices.setDefaultGatewayURL(“http://www.mySite.com/flashservices/gateway”);
gatewayConnection = NetServices.createGatewayConnection();
gatewayConnection.setCredentials(jdoe, 1234);
serviceObject = gatewayConnection.getService(“myService”, this);

Parameter Description

username Username to authenticate against in the application server.

password Password to authenticate against in the application server.
NetConnection.setCredentials 155

NetConnection.setDebugID

Availability • Flash Player 6.
• Flash Remoting MX.

Usage connectionObject.setDebugID(id)

Parameters

Return value Nothing.

Description Method. Sets a debug identifier for a NetConnection object. The debug identifier is passed
as a top-level field of all debug events that are associated with this NetConnection object. A
sequential number is generated as the debug identifier by default, but the type is not
restricted.

Example The following example demonstrates the setDebugID method using the NetServices
object:

#include “NetDebug.as”
#include “NetServices.as”
NetServices.setDefaultGatewayURL(“http://mySite.com/flashservices”);
NetServices.createGatewayConnection();
serviceObject = gatewayConnection.getService(“myService”, this);
gatewayConnection.trace("I just created myService.");
gatewayConnection.setDebugID(“Gateway Connection”);

See also NetConnection.getDebugID, NetConnection.trace

Parameter Description

id The new debug ID.
156 Chapter 8 Flash Remoting ActionScript Dictionary

NetConnection.trace

Availability • Flash Player 6.
• Flash Remoting MX.

Usage connectionObject.trace(objectName)

Parameters

Return value Nothing.

Description Method. Sends a client trace message associated with the NetConnection to the
NetConnection Debugger. The trace message includes the connection’s Debug ID.

Example The following example demonstrates the trace method using the NetServices object:

#include “NetDebug.as”
#include “NetServices.as”
NetServices.setDefaultGatewayURL(“http://www.mySite.com/flashservices”);
NetServices.createGatewayConnection();
serviceObject = gatewayConnection.getService(“myService”, this);
gatewayConnection.trace("I just created myService.");

See also NetConnection.setDebugID, NetDebug.trace

Parameter Description

objectName Identifies any serializable ActionScript object.
NetConnection.trace 157

NetDebug (object)
The NetDebug object lets developers trace function calls, parameters, and results among
the Flash application, Flash Remoting, and the application server. You use the
NetConnection Debugger (NCD) panel in the Flash MX authoring environment to view
the debugging results.

To use NetDebug, you must first import the NetDebug.as file in the first frame of the
Flash application with the include command, as follows:

#include “NetDebug.as”

Method summary for the NetDebug object

Method Description

NetDebug.trace Sends an ActionScript object to the NetConnection
Debugger in a client trace event.
158 Chapter 8 Flash Remoting ActionScript Dictionary

NetDebug.trace

Availability • Flash Player 6.
• Flash Remoting.

Usage NetDebug.trace(objectName)

Parameters

Return value Sends an ActionScript object as a client trace event to the NetConnection Debugger

Description Method. Sends a serializable ActionScript object as a client trace event to the
NetConnection Debugger. This trace event does not include connection information.

Example The following example sets a trace on the serviceObject object:

#include “NetServices.as”
#include “NetDebug.as”
NetServices.setDefaultGatewayURL(“http://www.mySite.com/flashservices/gateway”);
NetServices.createGatewayConnection();
serviceObject = gatewayConnection.getService(“myService”, this);
NetDebug.trace({level:"testing", message:"This is the message field of an object

sent the NCD via trace."});

See also NetConnection.trace

Parameter Description

objectName Identifies the ActionScript object name.
NetDebug.trace 159

NetServices (object)
The NetServices object is for Flash Remoting use only.

The NetServices object is a collection of methods that helps you create and use
connections to services using Flash Remoting MX. The NetServices object helps you
create and use NetConnection objects. For more information on the NetConnection object,
see NetConnection (object).

To use the NetServices object, you must first import the NetServices.as file in the first
frame of the Flash application with the include command, as follows:

#include “NetServices.as”

Method summary for the NetServices object

Method Description

NetServices.createGatewayConnection Connects to Flash Remoting MX.

NetServices.setDefaultGatewayURL Sets the default URL to connect to Flash
Remoting MX.
160 Chapter 8 Flash Remoting ActionScript Dictionary

NetServices.createGatewayConnection

Availability • Flash Player 6.
• Flash Remoting MX.

Usage NetServices.createGatewayConnection(URL)

Parameters

Return value A NetConnection object that represents the gateway.

Description Method. Creates a NetConnection object, which is used to make connections to Flash
Remoting MX on the application server. The Flash application only connects when you
actually make a Flash Remoting service function call.

The URL parameter is optional. Flash Remoting MX determines the gateway URL as
follows:

1 A URL specified in a createGatewayConnection method takes precedence over any
other URL.

2 A URL specified in the deployed web page takes precedence over a default gateway
URL. You specify the URL in the deployed web page by including it in the Flash
player OBJECT tag, in the following format:
<OBJECT classid="clsid:D27CDB6E-AE6D-11cf-96B8-444553540000"

codebase="http://download.macromedia.com/pub/shockwave/cabs/flash/
swflash.cab#version=6,0,0,0"

WIDTH="100%"
HEIGHT="100%"
id="movieName">
<PARAM NAME=flashvars VALUE="gatewayUrl=http://apps.mycompany.com/

flashservices/gateway">
<PARAM NAME=movie VALUE="movieName.swf">
<PARAM NAME=quality VALUE=high>
<PARAM NAME=bgcolor VALUE=#000099>

<EMBED src="movieName.swf"
FLASHVARS="gatewayURL=http://apps.mycompany.com/flashservices/gateway"

Parameter Description

URL A string that identifies a Flash Remoting service URL that will be
used when running the movie in the Flash MX authoring
environment.

[protocol://] host [:port] /appName

The value of appName depends on the type of gateway and the
particular configuration of Flash Remoting MX. For more
information, see “Identifying the gateway” on page 21.

If you omit protocol://, Flash connects to Flash Remoting MX using
the nonsecure http:// protocol. Flash does not connect to the
Flash Remoting service until a service function call. The other
acceptable value for protocol is https.

For example, the following URLs are formatted correctly:

• http://localhost:8500/flashservices/gateway
• https://www.myCompany.com/myMainDirectory/secureServer
NetServices.createGatewayConnection 161

quality=high bgcolor=#000099
WIDTH="100%"
HEIGHT="100%"
NAME="movieName"
TYPE="application/x-shockwave-flash"
PLUGINSPAGE="http://www.macromedia.com/go/getflashplayer">

</EMBED>
</OBJECT>

In this example, the flashvars PARAM tag supplies the Flash Remoting service URL
to Internet Explorer and the FLASHVARS attribute in EMBED tag specifies the URL to
Netscape.

3 If you do not otherwise specify a gateway URL, Flash Remoting MX uses the gateway
specified in a NetServices.setDefaultGatewayURL method.

Example The following code creates a NetConnection object for connections to the Flash Remoting
gateway on www.mySite.com:

#include “NetServices.as”
NetServices.createGatewayConnection(“http:/www.mySite.com/flashservices/gateway”);

See also Constructor for NetConnection, NetServices.setDefaultGatewayURL
162 Chapter 8 Flash Remoting ActionScript Dictionary

NetServices.setDefaultGatewayURL

Availability • Flash Player 6.
• Flash Remoting MX.

Usage NetServices.setdefaultGatewayUrl(URL)

Parameters

Return value Nothing.

Description Method. Sets the default Flash Remoting URL that Flash Remoting MX uses when it
executes the createGatewayConnection method and you do not otherwise specify the
gateway URL.

Note: If you specify localhost as the host in the setDefaultGatewayURL method, and you run
your Flash application from outside the Flash development environment or stand-alone
Flash player, Flash Remoting MX does not use localhost as the default gateway host.
Instead, it replaces localhost and any port specified in the setDefaultGatewayURL method
with the host and port specified to run the Flash application. For example, if you specify http:/
/localhost/flashservices/gateway in the setDefaultGatewayURL method and start your Flash
application by using the URL http://apps.mycompany.com:8500/flashapps/myapp.swf in a
web page or browser, Flash Remoting MX uses http://apps.mycompany.com:8500/
flashservices/gateway as the default gateway URL.

Example The following example establishes a default URL for Flash Remoting MX:

#include “NetServices.as”
NetServices.setDefaultGatewayURL("http://www.mySite.com/flashservices/gateway");

See also NetServices.createGatewayConnection

Parameter Description

URL A string that identifies a Flash Remoting service URL that will be used when
running the movie in the Flash MX authoring environment.

[protocol://] host [:port] /appName

The value of appName depends on the type of gateway and the particular
configuration of Flash Remoting MX. For more information, see “Identifying
the gateway” on page 21.

If you omit protocol://, Flash connects to Flash Remoting MX using the
nonsecure http:// protocol. Flash does not connect to the Flash Remoting
service until a service function call. The other acceptable value for protocol
is https.

For example, the following URLs are formatted correctly:

• http://localhost:8500/flashservices/gateway
• https://www.myCompany.com/myMainDirectory/secureServerApp/

flashservices/gateway
NetServices.setDefaultGatewayURL 163

RecordSet (object)
The RecordSet object is for Flash Remoting MX use only.

The RecordSet object lets you manipulate record sets returned from Flash Remoting or
create client-side record sets. A record set is a list of records, with methods for fetching,
accessing, and manipulating the list of records in various ways.

Record sets created on an application server usually consist of database query results.
Each record in a RecordSet object is represented by an untyped ActionScript object. In a
RecordSet object, individual records are identified by an index number. The index starts
at zero. When the record set is sorted or a record is added to or deleted from the record
set, the index changes.

Each field of the record is represented by a field in the object. For a RecordSet object that
originated from an application server, the field names are the same as the names of the
fields as defined by the server-side record set. For local RecordSet objects, the field names
are as defined in the original call to the new RecordSet() function.

To use the RecordSet object, you must use the include command to import the
NetServices ActionScript class file, which also includes the RecordSet ActionScript class,
in the first frame of a Flash application, as follows:

#include "NetServices.as"

Method summary for the RecordSet object

Method Description

Constructor for RecordSet Creates a new local RecordSet object.

RecordSet.addItem Inserts a record into the RecordSet object.

RecordSet.addItemAt Inserts a record into the RecordSet object at the
specified index.

RecordSet.addView Defines an object that will receive notifications when
the RecordSet object changes.

RecordSet.filter Creates a new RecordSet object that contains

selected records from the original RecordSet object.

RecordSet.getColumnNames Returns the names of all the columns of a RecordSet
object.

RecordSet.getItemAt Returns a record if the index is valid and the record is
immediately available.

RecordSet.getItemID Returns the record ID.

RecordSet.getLength Returns the number of records in a RecordSet object.

RecordSet.getNumberAvailable Returns the number of records that have been
downloaded from the server.
164 Chapter 8 Flash Remoting ActionScript Dictionary

RecordSet.isFullyPopulated Determines whether a RecordSet object is fully
populated or not.

RecordSet.isLocal Determines whether a RecordSet object is available
locally. Functionally equivalent to the
isFullyPopulated method.

RecordSet.removeAll Removes all records from the RecordSet object.

RecordSet.removeItemAt Removes the specified record from the RecordSet
object.

RecordSet.replaceItemAt Replaces a record at the specified index.

RecordSet.setDeliveryMode Changes the delivery mode of a record set from an
application server.

RecordSet.setField Replaces one field of a record with a new value.

RecordSet.sort Sorts all the records by a user-specified compare
function.

RecordSet.sortItemsBy Sorts all records in the RecordSet object without
making a new copy.

Method Description
RecordSet (object) 165

Constructor for RecordSet

Availability • Flash Player 6.
• Flash Remoting.

Usage new RecordSet (colunmNames)

Parameters

Return value New local RecordSet object.

Description Method. Creates a new local RecordSet object. The RecordSet object is initially empty.
Local RecordSet objects never download data from an application server; the data
delivery-related RecordSet methods are not available to local RecordSet objects.

Example The following example creates a new local RecordSet object:

#include "NetServices.as"
var productList = new RecordSet(["ProductName", "Price", "Color"]);

Parameter Description

columnNames An array of strings in which each string is a name of one of the record set
columns.
166 Chapter 8 Flash Remoting ActionScript Dictionary

RecordSet.addItem

Availability • Flash Player 6.
• Flash Remoting.

Usage RecordSet.addItem(record)

Parameters

Return value Nothing.

Description Method. Inserts a record into the RecordSet object. When you use the addItem method,
avoid the following conditions:
• The record parameter is not an object.
• The record parameter has unknown or missing fields.
• The RecordSet object is associated with an application server and not fully populated

yet.

Error handling

Example The following example demonstrates the addItem method:

#include “NetServices.as”
var productList = new RecordSet(["ProductName", "Price", "Color"]);
var itemToAdd = {ProductName: "magicbubbles"; Price: 1, Color: 0x987654);
productList.addItem(itemToAdd);

See also Constructor for RecordSet, RecordSet.addItemAt

Parameter Description

record The record to add.

Error condition What happens Error message

The record parameter is
not an object.

The record is added to the RecordSet
object.

The record parameter has
unknown or missing fields.

The record is added to the RecordSet
object.

The RecordSet object is
server-associated but not
fully populated.

No record is added to the RecordSet, and
an error message is reported to the Flash
MX output window and Debug Console.

Operation not
allowed on partial
RecordSet objects.
RecordSet.addItem 167

RecordSet.addItemAt

Availability • Flash Player 6.
• Flash Remoting.

Usage RecordSet.addItemAt(index, record)

Parameters

Return value Nothing.

Description Method. Inserts a record into the RecordSet object at the specified index. When you use
the addItemAt method, avoid the following conditions:
• Index out of range.
• The record parameter is not an object.
• The record parameter has unknown or missing fields.
• The RecordSet object is associated with an application server and not fully populated

yet.

Error handling

Example The following example demonstrates the addItemAt method:

#include "NetServices.as"
var productList =new RecordSet(["ProductName","Price","Color"]);
var itemToAdd = {ProductName:"magicbubbles", Price:1, Color:"0x987654"};
productList.addItemAt(0,itemToAdd);

See also Constructor for RecordSet, RecordSet.addItem

Parameter Description

index The index number of the record.

record The record to add.

Error condition What happens Error message

Index is less than zero. The RecordSet object is not changed.

Index is greater than the
length of the RecordSet
object.

The RecordSet object length is
extended, and the record is added to
the RecordSet object.

The record parameter is not
an object.

The record is added to the RecordSet
object.

The record parameter
contains unknown or missing
fields.

The record is added to the RecordSet
object.

The RecordSet object is
associated with an
application server and not
fully-populated yet.

No change is made to the RecordSet
object, and an error message is
reported to the Flash MX Output
Window and Debug Console.

Operation not
allowed on partial
RecordSet objects.
168 Chapter 8 Flash Remoting ActionScript Dictionary

RecordSet.addView

Availability • Flash Player 6.
• Flash Remoting.

Usage RecordSet.addView(object)

Parameters

Return value Nothing.

Description Method. Defines an ActionScript object that will receive notifications when the
RecordSet object changes. The object must contain a modelChanged function, which
takes one parameter, and an event descriptor object. The following table describes the
event descriptor messages:

Example The following example shows the use of the addView method. The modelChanged function
displays a trace message with the event type each time the record set changes.

#include "NetServices.as"

function modelChanged(info)
{

trace(info.event);
}

var productList = new RecordSet(["Name","Price","Color"]);

Parameter Description

object An ActionScript object to be notified when the RecordSet object
changes.

Message Description

{event:"addRows", firstRow:xxx,
lastRow:yyy}

Row numbers xxx through yyy have been
added.

{event:"allRows"} All records have arrived from the server. In
other words, theRecordSet object is now fully
populated.

{event:"deleteRows", firstRow:xxx,
lastRow:yyy}

Row numbers xxx through yyy have been
deleted.

{event:"fetchrows", firstRow:xxx,
lastRow:yyy}

Row numbers xxx through yyy have been
requested from the server, but have not
arrived yet.

{event:"sort"} The record set has been sorted.

{event:"updateAll"} The RecordSet object has changed in some
way, such as a new view being added.

{event:"updateRows", firstRow:xxx,
lastRow:yyy}

Row numbers xxx through yyy have changed
in some way.
RecordSet.addView 169

// whenever productlist changes, call this.modelChanged().
productList.addView(this);

// modify the RecordSet object, and see if "modelChanged" gets called
productList.addItem({Name: "milk", Price: 3.50, Color: "0xffffff"});
productList.addItem({Name: "eggs", Price: 1.75, Color: "0xffffff"});

See also Constructor for RecordSet
170 Chapter 8 Flash Remoting ActionScript Dictionary

RecordSet.filter

Availability • Flash Player 6.
• Flash Remoting.

Usage RecordSet.filter(filterFunction, context)

Parameters

Return value A new RecordSet object that contains a reference, not a copy, to all the records that were
selected by the filterFunction function.

Description Method. Creates a new RecordSet object by calling the filterFunction function once for
each record in the RecordSet object and collecting all records, for which the
filterFunction function returns true, into a new RecordSet object. The order of the
records in the new RecordSet object is the same as their order in the original RecordSet
object. The order in which the original RecordSet object is traversed during the
filtering process is not defined.

If used on a RecordSet object that is not fully-populated, only the currently available
records are filtered. The new RecordSet object does not inherit the original RecordSet
object’s list of views, nor any association with a server-side RecordSet object.

Example The following example demonstrates how to build a ListBox UI component that shows a
filtered view of a RecordSet object:

#include "NetServices.as"
var allFlights =new RecordSet(["flight","numberOfStops"]);
allFlights.addItem({flight: "123", numberOfStops: 0});
allFlights.addItem({flight: "321", numberOfStops: 3});
allFlights.addItem({flight: "456", numberOfStops: 1});
allFlights.addItem({flight: "654", numberOfStops: 2});
function flightFilter(aRecord, requestedNumberOfStops)
{

return (aRecord.numberOfStops <= requestedNumberOfStops);
}
myListBox.setDataProvider(allFlights.filter(flightFilter, 2));

See also RecordSet.addView, RecordSet.sort

Parameter Description

filterFunction An ActionScript function that takes one or two parameters and returns
true or false. The first parameter is a single record from the RecordSet
object. The second, optional, parameter is a context value that the
function uses to determine whether to include the record in the result. The
function must return true if the record should be included in the result
RecordSet object.

context A context value supplied by the caller. This value is the second parameter
to the filter function.
RecordSet.filter 171

RecordSet.getColumnNames

Availability • Flash Player 6.
• Flash Remoting.

Usage RecordSetObject.getColumnNames()

Parameters None.

Return value An array of strings. The array is either the same array that you passed into the RecordSet
constructor, or the equivalent array for an application server-associated RecordSet object.

Description Method. Returns the names of all the columns of a RecordSet object as an array of strings.

Example The following example demonstrates the getColumnNames method:

#include "NetServices.as"
var productList = new RecordSet(["ProductName", "Price", "Color"]);
var titles = productList.getColumnNames();
_root.firstColumnTitle.text = titles[0];
_root.secondColumnTitle.text = titles[1];

See also Constructor for RecordSet
172 Chapter 8 Flash Remoting ActionScript Dictionary

RecordSet.getItemAt

Availability • Flash Player 6.
• Flash Remoting.

Usage RecordSet.getItemAt(index)

Parameters

Return value A record.

Description Method. Returns a record if the index if valid and the record is immediately available. If
the requested record index number is less than zero or greater than the largest record
index number, it returns null. If the index number is valid but the requested record has
not yet been downloaded, it returns the string "in progress". Remember that RecordSet
object indexes change when they are sorted or records are deleted or added.

Error handling

Example The following example demonstrates the getItemAt method:

#include "NetServices.as"
var productList = new RecordSet(["ProductName","Price","Color"]);
productList.addItem({ProductName :"Spoon", Price :77, Color :"0x987654"});
var record = productList.getItemAt(0);

See also Constructor for RecordSet, RecordSet.addItemAt

Parameter Description

index The record number to retrieve.

Error condition What happens Error message

Index out of range Null is returned, and an error message
is reported to the Flash MX output
window and Debug Console.

RecordSet warning 104:
getItemAt(index) index out of
range
RecordSet.getItemAt 173

RecordSet.getItemID

Availability • Flash Player 6.
• Flash Remoting.

Usage RecordSet.getItemID(index)

Parameters

Return value A unique identification (ID) corresponding to the record, at the specified index. Returns
null if the index is out of range.

Description Method. Returns a unique ID corresponding to the record, at the specified index. The
RecordSet object assigns each record a unique ID. The ID is not part of the record; it is a
separate item that is associated with the record internally within the RecordSet object.
Unlike a record index, its ID will not change when the RecordSet object is sorted or when
records are added or deleted. When a record is deleted, its ID is retired and will never be
used again in this RecordSet object. Also, the ID is used by the ListBox object to maintain
the end user's selection when the RecordSet object changes.

Example The following example retrieves a record ID from a RecordSet object:

#include "NetServices.as"
var productList =new RecordSet(["ProductName","Price","Color"]);
productList.addItem({ProductName :"Spoon",Price :77,Color :"0x987654"});
var recordID =productList.getItemID(0);

Parameter Description

index The index number of the record.
174 Chapter 8 Flash Remoting ActionScript Dictionary

RecordSet.getLength

Availability • Flash Player 6.
• Flash Remoting.

Usage RecordSetObject.getLength()

Parameters None.

Return value The number of records in a RecordSet object.

Description Method. Returns the number of records in a RecordSet object.

Example The following example demonstrates the getLength method:

#include "NetServices.as"
var productList =new RecordSet(["ProductName","Price","Color"]);
productList.addItem({ProductName :"Spoon",Price :77,Color :0x987654});
productList.addItem({ProductName :"Niblick",Price :33,Color :660000});
trace("There are " + productList.getLength() + " products in the department.");
RecordSet.getLength 175

RecordSet.getNumberAvailable

Availability • Flash Player 6.
• Flash Remoting.

Usage RecordSet.getNumberAvailable()

Parameters None.

Return value An integer between zero and the total size of the record set, inclusive.

Description Method. Returns the number of records that have been downloaded from the server. The
count does not include records that have been requested but not yet arrived. For local
RecordSet objects, this will always return the same value as the getLength method.

Example The following example function uses the getNumberAvailable method:

#include "NetServices.as"
function reportDownloadStatus(aRecordSet)
{

trace(aRecordSet.getNumberAvailable()+ "of " + aRecordSet.getLength() + "records
have been downloaded.");

}

See also RecordSet.getLength, RecordSet.isFullyPopulated, RecordSet.isLocal
176 Chapter 8 Flash Remoting ActionScript Dictionary

RecordSet.isFullyPopulated

Availability • Flash Player 6.
• Flash Remoting.

Usage RecordSet.isFullyPopulated()

Parameters None.

Return value Returns true if the RecordSet object is fully populated or false if the RecordSet object is
not fully populated.

Description Method. Determines whether a RecordSet object is fully populated, that is, has all its
records. Local RecordSet objects are always fully populated. RecordSet objects provided by
application servers are fully populated after all of their records have been downloaded
from the application server.

A RecordSet object must be fully populated before you can use any of the following data
editing and manipulation methods:
• addItem
• addItemAt
• replaceItemAt
• setField
• removeItem
• removeAll
• filter
• sort

This method is functionally identical to the RecordSet.isLocal method.

Example The following example demonstrates the isFullyPopulated method using a local
RecordSet object:

#include "NetServices.as"
var productList =new RecordSet(["ProductName","Price","Color"]);
var itemToAdd = {ProductName:"magicbubbles",Price:1,Color:"0x987654"};
var itemToAdd2 = {ProductName:"kiddyshampoo",Price:7,Color:"0x876543"};
productList.addItem(itemToAdd);
productList.addItem(itemToAdd2);
if (productList.isFullyPopulated())
{

editButton.enable();
}

See also RecordSet.isLocal, RecordSet.getLength
RecordSet.isFullyPopulated 177

RecordSet.isLocal

Availability • Flash Player 6.
• Flash Remoting.

Usage RecordSet.isLocal()

Parameters None.

Return value Returns true if the RecordSet object is local and false if records remain to be retrieved
from the application server.

Description Method. Determines whether a RecordSet object is local or associated with an application
server. and records remain to be retrieved from the application server. This method is
functionally identical to the RecordSet.isFullyPopulated method.

Example The following example demonstrates the isLocal method:

#include "NetServices.as"
var productList =new RecordSet(["ProductName","Price","Color"]);
if (productList.isLocal())
{

_root.tellUser.text ="This RecordSet object is not associated with a server.";
}

See also RecordSet.isFullyPopulated
178 Chapter 8 Flash Remoting ActionScript Dictionary

RecordSet.removeAll

Availability • Flash Player 6.
• Flash Remoting.

Usage RecordSet.removeAll()

Parameters None.

Return value Nothing.

Description Method. Removes all records from the record set. Do not use the removeAll method,
when the RecordSet object is associated with an application server and not fully
populated yet.

Error handling

Example The following example demonstrates the removeAll method:

#include "NetServices.as"
var productList =new RecordSet(["ProductName","Price","Color"]);
var itemToAdd ={ProductName:"magicbubbles",Price:1,Color:"0x987654"};
productList.addItem(itemToAdd);
productList.removeAll();

See also Constructor for RecordSet, RecordSet.removeItemAt

Error condition What happens Error message

The RecordSet object is
server-associated and not
fully populated yet.

No change is made to the RecordSet
object, and an error message is
reported to the Flash MX output
window and Debug Console.

Operation not allowed
on partial RecordSet
objects.
RecordSet.removeAll 179

RecordSet.removeItemAt

Availability • Flash Player 6.
• Flash Remoting.

Usage RecordSet.removeItemAt(index)

Parameters

Return value Nothing.

Description Method. Removes the specified record. The associated record ID is never used again in
the RecordSet object. When you use the removeItemAt method, avoid the following
conditions:
• Index out of range.
• The RecordSet object is associated with an application server and not fully populated

yet.

Error handling

Example The following example demonstrates the removeItemAt method:

#include "NetServices.as"
var productList =new RecordSet(["ProductName","Price","Color"]);
var itemToAdd = {ProductName:"magicbubbles",Price:1,Color:"0x987654"};
productList.addItem(itemToAdd);
productList.removeItemAt(0);

See also Constructor for RecordSet, RecordSet.getItemID, RecordSet.addItem

Parameter Description

index The index number of the record.

Error condition What happens Error message

The RecordSet object is
server-associated but
not fully populated.

No change is made to the
RecordSet object, and an error
message is reported to the Flash
MX output window and Debug
Console.

Operation not allowed on
partial RecordSet objects.

Index out of range The RecordSet object is not
changed.
180 Chapter 8 Flash Remoting ActionScript Dictionary

RecordSet.replaceItemAt

Availability • Flash Player 6.
• Flash Remoting.

Usage RecordSet.replaceItemAt(index, record)

Parameters

Return value Nothing.

Description Method. Replaces a record in the RecordSet object at the specified index. The specified
index must identify an existing record. The record’s contents are replaced with the
contents of the record parameter. The record’s ID does not change. When you use the
replaceItemAt method, avoid the following conditions:
• Index out of range.
• The record parameter is not an object.
• The record parameter has unknown or missing fields.
• The RecordSet object is associated with an application server and not fully populated

yet.

Error handling

Example The following example demonstrates the replaceItemAt method:

#include "NetServices.as"
var productList =new RecordSet(["ProductName","Price","Color"]);
var itemToAdd = {ProductName:"magicbubbles",Price:1,Color:"0xb00fed"};
productList.addItem(itemToAdd);
myListBox.setDataProvider(productList);
var replacementItem ={ProductName:"kiddyShampoo", Price:2, Color:"0xd00d1e"};
productList.replaceItemAt(0,replacementItem);

See also Constructor for RecordSet, RecordSet.addItem, RecordSet.addItemAt

Parameter Description

index The index number of the record.

record The record to add.

Error condition What happens Error message

The RecordSet object is
server-associated but
not fully populated.

No change is made to the
RecordSet object, and an error
message is reported to the
Flash MX output window and
Debug Console.

Operation not allowed on partial
RecordSet objects.

Index out of range The RecordSet object is not
changed.

Unknown field name The RecordSet object is not
changed.
RecordSet.replaceItemAt 181

RecordSet.setDeliveryMode

Availability • Flash Player 6.
• Flash Remoting.

Usage RecordSet.setDeliveryMode(mode, pagesize, numPrefetchPages)

Parameters

Return value Nothing.

Description Method. Changes the delivery mode of a record set associated with an application server.
At any time, a RecordSet object associated with an application server is operating in a
particular data-delivery mode. The new mode setting takes effect immediately, except
that pending application server requests are allowed to complete. You can change mode
settings and delivery mode parameters.

Until you call this method for a RecordSet object, it operates in ondemand mode. When
using fetchall mode, you can supply a pagesize parameter. The entire record set will
be fetched from the application server in a series of requests, and each request will fetch
only the number of records specified in the pagesize parameter.

When using page mode, you can supply the pagesize and preFetchPages parameters. In
page mode, when you request a record using the getItemAt method, the RecordSet
object ensures that numPrefetch pages after the page containing the requested record are
either already available in the client or requested from the server. If numPrefetch pages is
zero, only the current page containing the requested record is fetched.

When the RecordSet object is fully populated, the setDeliveryMode method has no
effect.

Error handling

Example The following examples demonstrate the setDeliveryMode method:

myRecordSet.setDeliveryMode("fetchall");
myRecordSet.setDeliveryMode("page", 25, 2);

See also RecordSet.getItemAt, RecordSet.isFullyPopulated

Parameter Description

mode Identifies the delivery mode. The options are ondemand (default),
fetchall, and page.

pagesize (Optional) In page mode, what the page size is in fetchall mode,
how many records to fetch in each server request. The default is 25.

numPrefetchPages (Optional) In page mode, the number of pages to prefetch. The
default is 0, fetch only the required page.

Error condition What happens Error message

Unknown mode
string

No change is made to the RecordSet object,
and an error message is reported to the
Output Window and Debug Console.

SETDELIVERYMODE:
unknown mode string
182 Chapter 8 Flash Remoting ActionScript Dictionary

RecordSet.setField

Availability • Flash Player 6.
• Flash Remoting.

Usage RecordSet.setField(index, fieldName, value)

Parameters

Return value Nothing.

Description Method. Replaces one field of a record with a new value. When you use the setField
method, avoid the following conditions:
• Index out of range.
• The RecordSet object is associated with an application server and not fully populated

yet.
• Unknown field name. The fieldName parameter does not equal a valid column name.

Error handling

Example The following example demonstrates the setField method:

#include "NetServices.as"
var productList =new RecordSet(["ProductName","Price","Color"]);
var itemToAdd ={ProductName:"magicbubbles",Price:1,Color:"0x987654"};
productList.addItem(itemToAdd);
var replacementValue ="flashmx";
productList.setField(0,"ProductName",replacementValue);

See also Constructor for RecordSet, RecordSet.replaceItemAt

Parameter Description

index The index number of the record.

fieldName The field name to replace.

value The value to insert into the field.

Error condition What happens Error message

The RecordSet object is
server-associated but
not fully populated.

No change is made to the RecordSet
object, and an error message is
reported to the Flash MX output
window and Debug Console.

Operation not allowed on
partial RecordSet objects.

Index out of range The RecordSet object is not changed.

Unknown field name The RecordSet object is not changed.
RecordSet.setField 183

RecordSet.sort

Availability • Flash Player 6.
• Flash Remoting.

Usage RecordSet.sort(compareFunction)

Parameters

Return value Nothing.

Description Method. Sorts all the records using a user-specified compare function. The sort method
sorts all the records in place, without making a new copy. The order is determined by the
user-supplied compareFunction function. The original order is not remembered.

The sort method is approximately 10 times slower than the sortItemsBy method.

All registered views receive the following callback:

View.modelChanged("sort");

When you use the sort method, avoid sorting a RecordSet object that is associated with
an application server and not fully populated yet.

Error handling

Example The following example demonstrates how to sort an employeeList RecordSet object by
multiple keys:

function orderBySeveralKeys(aRecord, bRecord)
{

var aKey = aRecord.location + aRecord.department + aRecord.lastName;
var bKey = bRecord.location + bRecord.department + bRecord.lastName;
if (aKey < bKey)
{

return -1;
}
else if (aKey > bKey)
{

return 1;

Parameter Description

compareFunction An ActionScript comparison function that determines the sorting
order. Given the arguments A and B, the comparison function returns a
value as follows:

• -1 if A appears before B in the sorted sequence.
• 0 if A = B.
• 1 if A appears after B in the sorted sequence.

Error condition What happens Error message

The RecordSet object
is not fully populated.

No change is made to the RecordSet
object, and an error message is
reported to the Flash MX output
window and Debug Console.

Operation not allowed on
partial RecordSet objects.
184 Chapter 8 Flash Remoting ActionScript Dictionary

}
else
{

return 0;
}

}
employeeList.sort(orderBySeveralKeys);

See also RecordSet.addView, RecordSet.filter, RecordSet.sortItemsBy
RecordSet.sort 185

RecordSet.sortItemsBy

Availability • Flash Player 6.
• Flash Remoting.

Usage RecordSet.sortItemsBy(fieldName, direction)

Parameters

Return value Returns true if the sort succeeds, or false if any errors occurred.

Description Method. Sorts all records in the RecordSet object without making a new copy. The sort
key value for each record is the contents of the field identified by the field ID. The
original order is not saved.

Sorting large RecordSet objects can take a long time. RecordSet objects that contain fewer
than 2000 records should take less than one second on a computer with a Pentium 3
processor. Sort times increase rapidly as the number of records grows.

When two or more records have the same sort key value, they are not sorted in a special
way. The original order of the records might not be preserved.

If the fieldName parameter identifies a field that does not exist in one or more records,
then null is used as the key value for those records. Null sorts lower than any other value.

The sortItemsBy method may only be used on fully populated RecordSet objects.

All registered views will receive the following callback:
View.modelChanged("sort", 1, lastRecordNumber);

Error handling

Example The following example demonstrates the sortItemsBy method:

#include "NetServices.as"
var productList =new RecordSet(["ProductName","Price","Color"]);
var itemToAdd = {ProductName:"magicbubbles",Price:1,Color:"0x987654"};
var itemToAdd2 = {ProductName:"kiddyshampoo",Price:7,Color:"0x876543"};
var itemToAdd3 = {ProductName:"dishes",Price:2,Color:"0x098763"};
productList.addItem(itemToAdd);
productList.addItem(itemToAdd2);
productList.addItem(itemToAdd3);

Parameter Description

fieldName The name record field that is the sort key.

direction (Optional) Specifies the sort direction. A value of “DESC” specifies
descending sorting. Any other value is interpreted as ascending sorting,
the default.

Error condition What happens Error message

The RecordSet object is
server-associated but
not fully populated.

No change is made to the RecordSet
object, and an error message is
reported to the Flash MX output
window and Debug Console.

Operation not allowed on
partial RecordSet objects.
186 Chapter 8 Flash Remoting ActionScript Dictionary

productList.sortItemsBy("ProductName");
productList.sortItemsBy("Price","DESC");

See also RecordSet.addView, RecordSet.filter, RecordSet.sort
RecordSet.sortItemsBy 187

188 Chapter 8 Flash Remoting ActionScript Dictionary

INDEX
A

Action Message Format See AMF
ActionScript

connection object, creating 19
data types, converting from

application server 39
data types, converting to

application server 37
debugging 66
dictionary overview 140
function results, handling in 111
service object, creating 22
typed objects, using 43
XML object, sending to Java 114

ActionScript arrays
accessing in ColdFusion

components 79
accessing in ColdFusion pages 72

ActionScript collections
accessing in ColdFusion

components 79
accessing in ColdFusion pages 72

ActionScript data types
converting from ColdFusion 41
converting to ColdFusion 71

ActionScript objects
accessing in ColdFusion

components 80
accessing in ColdFusion pages 73
creating an assembly 135
element documentation

conventions 141
handling in Flash 136
returning from an assembly 135

adapters, service 3
AddHeader client event message 63
addHeader NetConnection object

method 148

addItem RecordSet object
method 167

addItemAt RecordSet object
method 168

addView RecordSet object
method 169

ADO.NET objects
using with Flash Remoting

MX 128
AMF

debugging messages 62
understanding 3

amf app_server event type 62
amfheaders app_server event

type 62
AmfMethodCall app_server event

message 64
AmfRequestHeader app_server event

message 64
AmfResponseCall app_server event

message 65
AmfResponseHeader app_server

event message 64
AmfStatusCall app_server event

message 65
app_server

event type 61
NetConnection Debugger event

messages 64
application

building a sample 9
building Flash with Flash

Remoting MX 5
building the Flash 10
structure 14

application server
authenticating to 23
converting data types to

ActionScript 39
converting data types to, from

ActionScript 37
data conversion 40
debugger events 61
tool 5

Arguments scope 81
arguments, using named with

ColdFusion 25
ASP.NET

application 121
assemblies 134
pages 122
state management 125

ASPX page
getting a reference to 122
invoking in ActionScript 123
using the Flash Remoting custom

server control in 123
assemblies

ASP.NET, calling 134
creating 135
returning an ActionScript object

from 135
authentication

ColdFusion MX 24
JRun 4 24
to the application server 23

B

bindFormatFunction DataGlue
object method 56, 144

bindFormatStrings DataGlue object
method 56, 145

Boolean data in ColdFusion 41
189

C

C#
converting data to

ActionScript 39
converting data types from

ActionScript 37
Call client event message 64
call NetConnection object

method 149
CF.http function 82
CF.query function 85
cfargument tag 78
cfcatch tag 90
cflogin tag 88
cftry tag 90
classes, Flash Remoting 16, 17
client

event type 61
NetConnection Debugger event

messages 63
Close client event message 64
close NetConnection object

method 150
code-behind files

using the Flash Remoting
namespace in 124

ColdFusion
ActionScript data conversion

issues 41
Boolean data in 41
converting data to

ActionScript 39
converting data types from

ActionScript 37
data types, converting to

ActionScript 71
debugging 62
functions with named arguments,

calling 25
NetConnection Debugger event

messages 65
numeric data 41

coldfusion app_server event type 62
ColdFusion components

ActionScript collections,
accessing 79

ActionScript objects,
accessing 80

Arguments scope 81
cfargument tag 78
component metadata 81

error handling 90
Flash Remoting MX and 77
Flash service name 77
pageable record sets 77
parameter passing 78
record sets, increments 77
record sets, returning 77
returning results from 77
security 88

ColdFusion MX
authenticating users 24
delivering RecordSet data

from 53
error handling 90
Flash Remoting MX and 69
Flash variable scope 71
incremental record sets 76, 78
server-side ActionScript 82
using Flash Remoting MX with

ColdFusion components 77
using Flash Remoting MX with

ColdFusion pages 70
web services 86

ColdFusion pages
ActionScript object access 73
arrays and 72
error handling 90
Flash Remoting MX and 70
Flash scope 71
Flash service name 70
pageable record sets 76
parameter passing 71
record sets, increments 76
record sets, returning 75
returning results from 74
security 88
structures and 72

ColdFusion security
cflogin tag 88
example 88
roles 89
with Flash Remoting MX 88

components. See Flash MX UI
components

configuring Flash Remoting MX 19
Connect client event message 63
connect NetConnection object

method 151

connecting
creating the connection object 19
creating the service object 22
defining the event handlers 25

connections, debugging 66
constructor

NetConnection ActionScript
object 147

RecordSet ActionScript
object 166

controller, model-view-controller
pattern 6

createGatewayConnection
NetServices object
method 161

specifying gateway in 20
credentials, resetting 24
custom server control

using in ASPX pages 123

D

data conversion
application server 40
ColdFusion to ActionScript 41

data types
and Flash Remoting MX 36
converting from ActionScript to

application server 37
converting from application server

to ActionScript 39
DataGlue ActionScript object

bindFormatFunction
method 144

bindFormatStrings method 145
class file, including 18
described 18
method summary 143
methods, using 56
reference overview 143

debugger. See NetConnection
Debugger

debugging
NetDebug.trace method 66
See also NetConnection Debugger
specific connections 66

design patterns
.NET 118
applying to Flash Remoting

MX 6
190 Index

facade 7
using other with Flash Remoting

MX 7
development environment

understanding 5

E

EJB methods
invoking in ActionScript 100

EJBHome object
getting a reference to 100

EJBs
connection considerations 23
Flash application example 101,

111
using with Flash Remoting

MX 100
environment, understanding

development 5
Error app_server event message 64
error app_server event type 62
error handling

error object 31
example 30, 32
hierarchy 31
in ColdFusion 90
Status event 31
strategies 32

error object, handling 31
event types, debugger 61
events

application server 64
client 63
ColdFusion 65
common debugger

information 62

F

facade design pattern 7
filter RecordSet object method 171
Flash

application, building 5, 10
ASP.NET pages, calling

from 122
custom tag, properties 120
web services, calling from 131
XML object, returning to 114

Flash Communication Server
debugging 62
NetConnection Debugger

events 65

Flash MX authoring environment 5
Flash MX UI components

using with RecordSet objects 54
Flash Remoting

ActionScript dictionary
overview 140

application structure 14
architecture 3
classes 16, 17
custom server control, using in

ASPX pages 123
development environment 5
namespace, using in code-behind

files 124
remote services, building the Flash

application 10
sample application, building 9
service adapters 3

Flash Remoting components
ActionScript classes 16
authenticating Flash movies 23
calling service functions 25
creating the connection object 19
creating the service object 22
including ActionScript classes 18
overview 14
passing parameters 25

Flash Remoting MX
.NET framework 118
about 1, 2
ADO.NET objects, using

with 128
and data types 36
ASP.NET state management, using

with 125
building Flash applications

with 5
ColdFusion components and 77
ColdFusion MX and 69
ColdFusion pages and 70
ColdFusion results, accessing 74
configuring 19
design patterns, applying 6
design patterns, using other

with 7
EJBs, using with 100
for .NET, overview 118
for Java, overview 92
Java classes and JavaBeans, using

with 94

JMX, using with 107
JRun security with 113
model-view-controller pattern,

using with 6
server-side ActionScript, using

with 82, 109
servlets and JSPs, using with 104
web services, ColdFusion 86
XML and Java 114

Flash scope 71
Flash service name

ColdFusion components 77
ColdFusion pages 70

Flash.Pagesize 71
Flash.Params 71

ActionScript objects and 73
parameter referencing 71
using 71

Flash.Result 71
flashcomm_server NetConnection

Debugger event types 62
function results, handling in

ActionScript 111
functions, specifying 26

G

gateway
specifying in a web page 21
specifying in

createGatewayConnection
NetServices object
method 20

gateway URL
determining 19
identifying 21

getColumnNames RecordSet object
method 172

getDebugConfig
NetConnection object

method 152
NetDebugConfig object

method 67
getDebugID NetConnection object

method 153
getItemAt RecordSet object

method 173
getItemID RecordSet object

method 174
getLength RecordSet object

method 175
Index 191

getNumberAvailable RecordSet
object method 176

getService NetConnection object
method 154

specifying a responder object 28

H

handling
error hierarchy 31
error strategies 32
errors 31
errors with ColdFusion 90
function results in

ActionScript 111
result hierarchy 27
result strategies 27
service results 27

Hello World application
building with Flash Remoting

MX 9
http

client event type 61
debugging 61

httpheaders app_server event
type 62

HttpRequestHeader app_server event
message 64

I

incremental record sets 76
Information app_server event

message 65
isFullyPopulated RecordSet object

method 177
isLocal RecordSet object

method 178

J

Java
converting data to

ActionScript 39
converting data types from

ActionScript 37
Flash Remoting MX for 92
results 111
serializable objects 45
using XML with Flash Remoting

MX 114
Java application servers

EJBs, using with Flash Remoting
MX 100

Java classes and JavaBeans, using
with Flash Remoting
MX 94

JMX, using with Flash Remoting
MX 107

logging 115
returning complex objects 111
servlets and JSPs, using with Flash

Remoting MX 104
Java classes, using with Flash

Remoting MX 94
JavaBeans, using with Flash Remoting

MX 94
JMX, using with Flash Remoting

MX 107
JRun

JMX 107
using security with Flash Remoting

MX 113
JRun 4

authenticating users 24

L

log entries, viewing 115
logging Java application servers 115
logging out users 24

M

MBeans
calling JMX from Flash 107
getting a reference to 107
invoking methods in

ActionScript 108
Microsoft .NET

Flash Remoting design
patterns 118

Flash Remoting directory
structure 120

overview 118
model, model-view-controller

pattern 6
model-view-controller pattern, using

with Flash Remoting MX 6
MVC See model-view-controller

N

named arguments, using with
ColdFusion 25

namespace, using in code-behind
files 124

NetConnection ActionScript object
addHeader method 148
call method 149
close method 150
connect method 151
constructor 147
described 17
getDebugConfig method 152
getDebugID method 153
getService method 22, 154
method summary 146
reference overview 146
setCredentials method 23, 155
setDebugID method 66, 156
trace method 66, 157

NetConnection Debugger
ActionScript for 66
application server event

messages 64
client event messages 63
ColdFusion event messages 65
common event information 62
configuring output in

ActionScript 66
event types 61
Flash Communication Server

events 65
using 60

NetDebug ActionScript object
class file, including 18
described 17
method summary 158
reference overview 158
trace method 66, 159

NetDebugConfig ActionScript
object 66

getting with getDebugConfig
method 67

NetServices ActionScript object
class file, including 18
createGatewayConnection

method 19, 161
described 17
method summary 160
reference overview 160
setDefaultGatewayURL

method 163
notifications, using with RecordSet

objects 50
numeric data in ColdFusion 41
192 Index

O

objects, using in Flash Remoting
applications 43

P

pageable record sets 53, 76

R

realtime_server, NetConnection
Debugger event types 62

record sets
about 46
ColdFusion components,

returning from 77
ColdFusion pages, returning

from 75
debugging 61
delivering data from ColdFusion

MX 53
filtering 52
incremental 76, 78
pageable 53, 76
sorting 51
See also RecordSet ActionScript

object
RecordSet

displaying in Flash with
ActionScript 130

recordset
app_server event type 62
client event type 61

RecordSet ActionScript object
addItem method 167
addItemAt method 49, 168
addView method 50, 169
bindFormatFunction method 56
bindFormatStrings method 56
changing data in 49
constructor 166
creating 48
data, editing 53
described 18
event descriptor messages 51
filter method 171
filtering 52
Flash MX UI components 54
getColumnNames method 172
getItemAt method 173
getItemID method 174
getLength method 175

getNumberAvailable
method 176

getting data values, getting 48
incremental record sets 76, 78
information, getting 48
isFullyPopulated method 177
isLocal method 178
items, adding 49
method summary 164
methods 47
methods and properties, using 48
notifications, using 50
pageable 53
record fields, renaming 50
records, adding 49
records, removing 49
records, replacing 50
records, replacing and

renaming 50
reference overview 164
removeAll method 179
removeItemAt method 49, 180
replaceItemAt method 50, 181
See also record sets
setDeliveryMode method 182
setField method 183
sort method 184
sorting 51
sortItemsBy method 51, 186
using 46
using directly in components 55
values, returning 48

reference
ASPX page, getting 122
EJBHome, getting 100
MBean, getting 107
server-side ActionScript,

getting 109
remote functions

specifying 26
remote service

Flash application, building 10
remote web service, invoking from

Flash 132
removeAll RecordSet object

method 179
removeItemAt RecordSet object

method 180
replaceItemAt RecordSet object

method 181

responder object
specifying 25
specifying in service functions 29
specifying with getService

method 28
Result client event message 63
results

complex Java objects,
returning 111

handling 27
handling example 29
handling hierarchy 27
Java 111
returning from RecordSet

objects 48
strategies for handling 27

roles, web services and 89
rtmp client event type 61

S

security
Flash Remoting MX with

JRun 113
implementing 23
logging out users 24
with ColdFusion 88

serializable Java objects 45
server-side ActionScript

CF.http function 82
CF.query function 85
functions, invoking 109
getting a reference to 109
overview 82
using with Flash Remoting

MX 109
service adapters 3
service functions

calling 25
defining the event handlers 25
example 30
handling results 27
passing parameters 25
result handling example 29
result object 29
result-handling hierarchy 27
result-handling strategies 27
specifying 26
specifying a responder object

in 29
Index 193

service object
creating 22
EJB considerations 23

service, specifying 22
session variables

getting and setting with Flash
Remoting MX 126

setCredentials function 88
setCredentials NetConnection object

method 155
setDebugID NetConnection object

method 66, 156
setDefaultGatewayURL NetServices

object method 163
URL resolution 20
using 20

setDeliveryMode RecordSet object
method 182

setField RecordSet object
method 183

SOAP
converting data to

ActionScript 39
converting data types from

ActionScript 37
sort RecordSet object method 184
sortItemsBy RecordSet object

method 186
state management

using ASP.NET with Flash
Remoting MX 125

Status client event message 63

T

trace
client event type 61
Flash Communication Server event

type 62
NetConnection object

method 66, 157
NetDebug object method 66,

159
Trace client event message 63
typed objects

using ActionScript 43

U

URL, determining the gateway 19
users, logging out 24

V

view, model-view-controller
pattern 6

Visual Basic
converting data to

ActionScript 39
converting data types from

ActionScript 37

W

web page, specifying gateway in 21
web service methods

calling using ColdFusion 86
invoking using Flash Remoting

MX 131
web services

calling from Flash 131
invoking remote from Flash 132
invoking with ColdFusion 86
security, roles for 89
using ColdFusion 86

WSDL file 86

X

XML
object, returning to Flash 114
object, sending to Java 114
using in Flash Remoting

applications 57
using with Flash and Java 114
194 Index

	Using Flash Remoting MX
	About This Book
	Who should read this book
	Developer resources
	About Macromedia Flash Remoting MX documentation
	Getting answers
	Contacting Macromedia

	Using Flash Remoting MX
	About Flash Remoting MX
	Understanding the Flash Remoting service adapters
	Understanding AMF

	Building Flash applications with Flash Remoting MX
	Understanding the Flash Remoting development environment
	Applying design patterns to Flash Remoting MX

	Building a Hello World application with Flash Remoting
	Building the remote service
	Calling the remote service from ActionScript

	Using Flash Remoting Components in ActionScript
	Flash Remoting application structure
	Flash Remoting classes
	About the Flash Remoting classes

	Including Flash Remoting ActionScript files
	Configuring Flash Remoting MX
	Creating the Flash Remoting connection object
	Creating the service object
	Authenticating to the application server

	Calling service functions
	Specifying a responder object
	Calling functions using named arguments in ColdFusion
	Specifying functions

	Handling service results
	Result-handling hierarchy
	Result-handling strategies

	Handling errors
	The error object
	Error-handling hierarchy
	Error-handling strategies

	Using Flash Remoting Data in ActionScript
	About Flash Remoting MX and data types
	Converting from ActionScript to application server data types
	ActionScript data conversion notes

	Converting from application server data types to ActionScript
	Server data conversion notes
	ColdFusion to ActionScript data conversion issues

	Working with objects
	Working with ActionScript typed objects
	Working with serializable Java objects

	Working with RecordSet objects
	About record sets
	RecordSet methods
	Using RecordSet methods and properties
	Delivering RecordSet data to Flash applications in ColdFusion MX
	Using Flash MX UI components with RecordSet objects

	Working with XML

	Using the NetConnection Debugger
	About the NetConnection Debugger
	NetConnection events
	NetConnection event types
	Common event information
	client event messages
	app_server event messages
	Flash Communication Server events

	Using the NetConnection Debugger in ActionScript
	Using the NetDebug.trace method
	Using connection-specific debugging methods
	Configuring debugger output in ActionScript

	Using Flash Remoting MX with ColdFusion MX
	Using Flash Remoting MX with ColdFusion pages
	Determining the Flash service name
	Using the Flash scope to pass parameters to ColdFusion pages
	Accessing ActionScript objects

	Using Flash Remoting MX with ColdFusion components
	Determining the Flash service name
	Returning results to ActionScript
	Passing parameters to ColdFusion components
	Accessing ActionScript objects
	Using component metadata with the Flash Remoting service

	Using Flash Remoting MX with server-side ActionScript
	Using CF.http
	Using CF.query

	Calling web services from Flash Remoting MX
	Invoking web service methods using Flash Remoting MX

	Securing access to ColdFusion from Flash Remoting MX
	Handling errors with ColdFusion

	Using Flash Remoting MX for Java
	About Flash Remoting MX for Java
	How does Flash Remoting MX for Java work?
	Where does Flash Remoting MX fit into the Java application architecture?

	Calling Java classes or JavaBeans from ActionScript
	Making a Java class or JavaBean available to Flash Remoting MX
	Getting a reference to a Java class or JavaBean in ActionScript
	Invoking Java methods in ActionScript
	Looking at a Flash application that calls a JavaBean

	Calling EJBs from Flash
	Getting a reference to an EJBHome object in ActionScript
	Invoking EJB methods in ActionScript
	Looking at a Flash application that calls an EJB

	Calling servlets and JSPs from Flash
	Coding a servlet to use with Flash Remoting MX
	Getting a reference to a web application in ActionScript
	Calling a servlet or JSP

	Calling JMX MBeans from Flash (JRun only)
	Getting a reference to an MBean in ActionScript
	Invoking MBean methods in ActionScript

	Calling server-side ActionScript from Flash (JRun only)
	Getting a reference to a server-side ActionScript file
	Invoking server-side ActionScript functions

	Handling function results in ActionScript
	Using Flash Remoting MX with JRun security
	Looking at the ActionScript
	Looking at the JRun security settings

	Passing XML objects between Flash and Java
	Sending an ActionScript XML object to Java
	Returning an XML object from Java to Flash

	Viewing Flash Remoting MX log entries

	Using Flash Remoting MX for Microsoft .NET
	About using Flash Remoting MX for Microsoft .NET
	Where does Flash Remoting MX fit into the Microsoft .NET framework?
	Setting up a Flash Remoting-enabled ASP.NET application

	Calling ASP.NET pages from Flash
	Making an ASP.NET page available to Flash Remoting MX
	Getting a reference to an ASPX-based service in ActionScript
	Invoking ASPX pages in ActionScript
	Using the Flash Remoting custom server control in ASPX pages
	Using the Flash Remoting namespace in code-behind files
	Using ASP.NET state management with Flash Remoting MX
	Using ASP.NET exception handling

	Using ADO.NET objects with Flash Remoting MX
	Displaying a RecordSet in Flash with ActionScript

	Calling web services from Flash
	Invoking web service methods using Flash Remoting MX
	Invoking a remote web service from Flash

	Calling ASP.NET assemblies from Flash
	Calling assemblies from Flash
	Returning an ActionScript object from an assembly

	Viewing Flash Remoting log entries

	Flash Remoting ActionScript Dictionary
	Overview of Flash Remoting ActionScript dictionary
	ActionScript element documentation conventions
	Contents of the dictionary
	DataGlue�(object)
	Method summary for the DataGlue object

	NetConnection�(object)
	Method summary for the NetConnection object

	NetDebug�(object)
	Method summary for the NetDebug object

	NetServices�(object)
	Method summary for the NetServices object

	RecordSet�(object)
	Method summary for the RecordSet object

	INDEX

